Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
AJNR Am J Neuroradiol ; 41(12): 2219-2226, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33154077

RESUMO

BACKGROUND AND PURPOSE: MR imaging is essential for MS diagnosis and management, yet it has limitations in assessing axonal damage and remyelination. Gadolinium-based contrast agents add value by pinpointing acute inflammation and blood-brain barrier leakage, but with drawbacks in safety and cost. Neurite orientation dispersion and density imaging (NODDI) assesses microstructural features of neurites contributing to diffusion imaging signals. This approach may resolve the components of MS pathology, overcoming conventional MR imaging limitations. MATERIALS AND METHODS: Twenty-one subjects with MS underwent serial enhanced MRIs (12.6 ± 9 months apart) including NODDI, whose key metrics are the neurite density and orientation dispersion index. Twenty-one age- and sex-matched healthy controls underwent unenhanced MR imaging with the same protocol. Fifty-eight gadolinium-enhancing and non-gadolinium-enhancing lesions were semiautomatically segmented at baseline and follow-up. Normal-appearing WM masks were generated by subtracting lesions and dirty-appearing WM from the whole WM. RESULTS: The orientation dispersion index was higher in gadolinium-enhancing compared with non-gadolinium-enhancing lesions; logistic regression indicated discrimination, with an area under the curve of 0.73. At follow-up, in the 58 previously enhancing lesions, we identified 2 subgroups based on the neurite density index change across time: Type 1 lesions showed increased neurite density values, whereas type 2 lesions showed decreased values. Type 1 lesions showed greater reduction in size with time compared with type 2 lesions. CONCLUSIONS: NODDI is a promising tool with the potential to detect acute MS inflammation. The observed heterogeneity among lesions may correspond to gradients in severity and clinical recovery after the acute phase.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Inflamação/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Neuritos/patologia , Neuroimagem/métodos , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos Transversais , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Inflamação/patologia , Masculino , Esclerose Múltipla/patologia
2.
Neuroimage ; 223: 117242, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32798678

RESUMO

In multisite neuroimaging studies there is often unwanted technical variation across scanners and sites. These "scanner effects" can hinder detection of biological features of interest, produce inconsistent results, and lead to spurious associations. We propose mica (multisite image harmonization by cumulative distribution function alignment), a tool to harmonize images taken on different scanners by identifying and removing within-subject scanner effects. Our goals in the present study were to (1) establish a method that removes scanner effects by leveraging multiple scans collected on the same subject, and, building on this, (2) develop a technique to quantify scanner effects in large multisite studies so these can be reduced as a preprocessing step. We illustrate scanner effects in a brain MRI study in which the same subject was measured twice on seven scanners, and assess our method's performance in a second study in which ten subjects were scanned on two machines. We found that unharmonized images were highly variable across site and scanner type, and our method effectively removed this variability by aligning intensity distributions. We further studied the ability to predict image harmonization results for a scan taken on an existing subject at a new site using cross-validation.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Algoritmos , Artefatos , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
3.
Eur J Neurol ; 26(10): 1341-1344, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30932272

RESUMO

BACKGROUND AND PURPOSE: Adrenomyeloneuropathy (AMN) is the most frequent metabolic hereditary spastic paraplegia. Accordingly, its main site of pathological changes is the spinal cord. It is difficult to quantify AMN progression because commonly used clinical scales have limitations and reliable biomarkers are lacking. The goal was to investigate whether spinal cord and brain quantitative magnetic resonance imaging may assess structural changes in AMN over a relatively short time period. METHODS: In this longitudinal observational study, the total cord areas (TCAs) from the C2-C3 to T2-T3 level and diffusion tensor imaging (DTI) metrics of the cervical spinal cord and brain portion of the corticospinal tracts in six AMN and six age-matched control subjects at baseline and at a mean follow-up of 22.6 months were assessed. RESULTS: A significant reduction of the mean TCA at the T1-T2 level (-3.79%) and a trend of reduction at the lowest cervical levels were observed only in AMN patients. Additionally, DTI metrics revealed significant changes in fractional anisotropy (-8.84%), mean diffusivity (+12.62%) and radial diffusivity (+25.91%) at the C2-C3 level. DISCUSSION: The study encourages the assessment of TCAs and spinal cord DTI metrics as surrogate outcome measures in AMN, by focusing on the cervical-thoracic junction and the uppermost part of the cervical spinal cord. Despite the limitation of the results due to the small number of investigated subjects, these observations are useful for forthcoming clinical trials in AMN and possibly other hereditary diseases with predominant spinal cord involvement.


Assuntos
Adrenoleucodistrofia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Anisotropia , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Progressão da Doença , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Tratos Piramidais/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem
4.
AJNR Am J Neuroradiol ; 39(4): 626-633, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29472300

RESUMO

BACKGROUND AND PURPOSE: Lesion load is a common biomarker in multiple sclerosis, yet it has historically shown modest association with clinical outcome. Lesion count, which encapsulates the natural history of lesion formation and is thought to provide complementary information, is difficult to assess in patients with confluent (ie, spatially overlapping) lesions. We introduce a statistical technique for cross-sectionally counting pathologically distinct lesions. MATERIALS AND METHODS: MR imaging was used to assess the probability of a lesion at each location. The texture of this map was quantified using a novel technique, and clusters resembling the center of a lesion were counted. Validity compared with a criterion standard count was demonstrated in 60 subjects observed longitudinally, and reliability was determined using 14 scans of a clinically stable subject acquired at 7 sites. RESULTS: The proposed count and the criterion standard count were highly correlated (r = 0.97, P < .001) and not significantly different (t59 = -.83, P = .41), and the variability of the proposed count across repeat scans was equivalent to that of lesion load. After accounting for lesion load and age, lesion count was negatively associated (t58 = -2.73, P < .01) with the Expanded Disability Status Scale. Average lesion size had a higher association with the Expanded Disability Status Scale (r = 0.35, P < .01) than lesion load (r = 0.10, P = .44) or lesion count (r = -.12, P = .36) alone. CONCLUSIONS: This study introduces a novel technique for counting pathologically distinct lesions using cross-sectional data and demonstrates its ability to recover obscured longitudinal information. The proposed count allows more accurate estimation of lesion size, which correlated more closely with disability scores than either lesion load or lesion count alone.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
5.
Neuroradiology ; 59(8): 819-827, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28676888

RESUMO

PURPOSE: The aim of this prospective study was to determine the feasibility in terms of repeatability and reproducibility of diffusional kurtosis imaging (DKI) for microstructural assessment of the normal cervical spinal cord (cSC) using a phase-sensitive inversion recovery (PSIR) sequence as the anatomical reference for accurately defining white-matter (WM) and gray-matter (GM) regions of interests (ROIs). METHODS: Thirteen young healthy subjects were enrolled to undergo DKI and PSIR sequences in the cSC. The repeatability and reproducibility of kurtosis metrics and fractional anisotropy (FA) were calculated in GM, WM, and cerebral-spinal-fluid (CSF) ROIs drawn by two independent readers on PSIR images of three different levels (C1-C4). The presence of statistically significant differences in DKI metrics for levels, ROIs (GM, WM, and CSF) repeatability, reproducibility, and inter-reader agreement was evaluated. RESULTS: Intra-class correlation coefficients between the two readers ranged from good to excellent (0.75 to 0.90). The inferior level consistently had the highest concordance. The lower values of scan-rescan variability for all DKI parameters were found for the inferior level. Statistically significant differences in kurtosis values were not found in the lateral white-matter bundles of the spinal cord. CONCLUSION: The integration of DKI and PSIR sequences in a clinical MR acquisition to explore the regional microstructure of the cSC in healthy subjects is feasible, and the results obtainable are reproducible. Further investigation will be required to verify the possibility to translate this method to a clinical setting to study patients with SC involvement especially in the absence of MRI abnormalities on standard sequences.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Medula Espinal/ultraestrutura , Adulto , Anisotropia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Estudos Prospectivos , Valores de Referência , Reprodutibilidade dos Testes
6.
AJNR Am J Neuroradiol ; 38(8): 1501-1509, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28642263

RESUMO

BACKGROUND AND PURPOSE: MR imaging can be used to measure structural changes in the brains of individuals with multiple sclerosis and is essential for diagnosis, longitudinal monitoring, and therapy evaluation. The North American Imaging in Multiple Sclerosis Cooperative steering committee developed a uniform high-resolution 3T MR imaging protocol relevant to the quantification of cerebral lesions and atrophy and implemented it at 7 sites across the United States. To assess intersite variability in scan data, we imaged a volunteer with relapsing-remitting MS with a scan-rescan at each site. MATERIALS AND METHODS: All imaging was acquired on Siemens scanners (4 Skyra, 2 Tim Trio, and 1 Verio). Expert segmentations were manually obtained for T1-hypointense and T2 (FLAIR) hyperintense lesions. Several automated lesion-detection and whole-brain, cortical, and deep gray matter volumetric pipelines were applied. Statistical analyses were conducted to assess variability across sites, as well as systematic biases in the volumetric measurements that were site-related. RESULTS: Systematic biases due to site differences in expert-traced lesion measurements were significant (P < .01 for both T1 and T2 lesion volumes), with site explaining >90% of the variation (range, 13.0-16.4 mL in T1 and 15.9-20.1 mL in T2) in lesion volumes. Site also explained >80% of the variation in most automated volumetric measurements. Output measures clustered according to scanner models, with similar results from the Skyra versus the other 2 units. CONCLUSIONS: Even in multicenter studies with consistent scanner field strength and manufacturer after protocol harmonization, systematic differences can lead to severe biases in volumetric analyses.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/normas , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Neuroimagem/normas , Adulto , Encéfalo/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/patologia , Neuroimagem/métodos , Reprodutibilidade dos Testes
7.
Phys Rev Lett ; 100(5): 057203, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18352419

RESUMO

Low-temperature specific heat, magnetic susceptibility, and zero-field muon spin resonance (microSR) measurements have been performed in the quasi-one-dimensional molecular helimagnetic compound Gd(hfac)3NITEt. The specific heat presents two anomalies at T(0)=2.19+/-0.02 K and T(N)=1.88+/-0.02 K, which both disappear upon the application of a weak magnetic field. Conversely, magnetic susceptibility and muSR data show the divergence of two-spin correlation functions only at T(N)=1.88+/-0.02 K. These results suggest an experimental validation of Villain's conjecture of a two-step magnetic ordering in quasi-one-dimensional XY helimagnets; i.e., the paramagnetic phase and the helical spin solid phase are separated by a chiral spin liquid phase, where translational invariance is broken without violation of rotational invariance.

8.
Phys Rev Lett ; 88(4): 047601, 2002 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-11801167

RESUMO

Muon spin resonance and 7Li NMR relaxation measurements in frustrated two-dimensional S = 1/2 Heisenberg antiferromagnets on a square lattice are presented. It is found that, in both Li2VOSiO4 and Li2VOGeO4, spin dynamics at frequencies orders of magnitude below the Heisenberg exchange frequency are present. These dynamics are associated with the motions of walls separating coexisting collinear domains with a magnetic wave vector rotated by 90 degrees.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...