Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 65(24): 3936-49, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19011747

RESUMO

Retinoic acid (RA), the most active retinoid, is synthesized in two steps from retinol. The first step, oxidation of retinol to retinaldehyde, is catalyzed by cytosolic alcohol dehydrogenases (ADHs) of the medium-chain dehydrogenase/reductase (MDR) superfamily and microsomal retinol dehydrogenases (RDHs) of the short-chain dehydrogenase/reductase (SDR) superfamily. The second step, oxidation of retinaldehyde to RA, is catalyzed by several aldehyde dehydrogenases. ADH1 and ADH2 are the major MDR enzymes in liver retinol detoxification, while ADH3 (less active) and ADH4 (most active) participate in RA generation in tissues. Several NAD(+)- and NADP(+)-dependent SDRs are retinoid active. Their in vivo contribution has been demonstrated in the visual cycle (RDH5, RDH12), adult retinoid homeostasis (RDH1) and embryogenesis (RDH10). K(m) values for most retinoid-active ADHs and RDHs are close to 1 microM or lower, suggesting that they participate physiologically in retinol/retinaldehyde interconversion. Probably none of these enzymes uses retinoids bound to cellular retinol-binding protein, but only free retinoids. The large number of enzymes involved in the two directions of this step, also including aldo-keto reductases, suggests that retinaldehyde levels are strictly regulated.


Assuntos
Álcool Desidrogenase/metabolismo , Oxirredutases do Álcool/metabolismo , Família Multigênica , Retinoides/metabolismo , Animais , Crescimento e Desenvolvimento , Humanos , Deficiência de Vitamina A/enzimologia
2.
Cell Mol Life Sci ; 64(11): 1419-27, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17497241

RESUMO

Zeta-crystallins constitute a family of proteins with NADPH:quinone reductase activity found initially in mammalian lenses but now known to be present in many other organisms and tissues. Few proteins from this family have been characterized, and their function remains unclear. In the present work, zeta-crystallins from human and yeast (Zta1p) were expressed, purified and characterized. Both enzymes are able to reduce ortho-quinones in the presence of NADPH but are not active with 2-alkenals. Deletion of the ZTA1 gene makes yeast more sensitive to menadione and hydrogen peroxide, suggesting a role in the oxidative stress response. The human and yeast enzymes specifically bind to adenine-uracil rich elements (ARE) in RNA, indicating that both enzymes are ARE-binding proteins and that this property has been conserved in zeta-crystallins throughout evolution. This supports a role for zeta-crystallins as trans-acting factors that could regulate the turnover of certain mRNAs.


Assuntos
RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , zeta-Cristalinas/metabolismo , Animais , Sequência de Bases , Humanos , Dados de Sequência Molecular , Peso Molecular , NADP/metabolismo , Ligação Proteica , RNA/genética , RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , zeta-Cristalinas/química , zeta-Cristalinas/genética
3.
Cell Mol Life Sci ; 64(4): 498-505, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17279314

RESUMO

The metabolism of all-trans- and 9-cis-retinol/ retinaldehyde has been investigated with focus on the activities of human, mouse and rat alcohol dehydrogenase 2 (ADH2), an intriguing enzyme with apparently different functions in human and rodents. Kinetic constants were determined with an HPLC method and a structural approach was implemented by in silico substrate dockings. For human ADH2, the determined K(m) values ranged from 0.05 to 0.3 microM and k(cat) values from 2.3 to 17.6 min(-1), while the catalytic efficiency for 9-cis-retinol showed the highest value for any substrate. In contrast, poor activities were detected for the rodent enzymes. A mouse ADH2 mutant (ADH2Pro47His) was studied that resembles the human ADH2 setup. This mutation increased the retinoid activity up to 100-fold. The K(m) values of human ADH2 are the lowest among all known human retinol dehydrogenases, which clearly support a role in hepatic retinol oxidation at physiological concentrations.


Assuntos
Álcool Desidrogenase/metabolismo , Fígado/enzimologia , Vitamina A/metabolismo , Álcool Desidrogenase/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Cinética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Ratos , Alinhamento de Sequência
4.
Cell Mol Life Sci ; 60(5): 1013-8, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12827289

RESUMO

S-nitrosoglutathione (GSNO) formation represents a mechanism for storage and transport of nitric oxide. Analysis of human liver and Saccharomyces cerevisiae extracts has revealed the presence of only one enzyme able to significantly reduce GSNO, identified as glutathione-dependent formaldehyde dehydrogenase (FALDH). GSNO is the best substrate known for the human and yeast enzymes (kcat/Km = 444,400 and 350,000 mM(-1) min(-1), respectively). Although NADH is the preferred cofactor, some activity with NADPH (Km = 460 microM) can be predicted in vivo. The subcellular localization demonstrates a cytosolic and nuclear distribution of FALDH in living yeast cells. This agrees with previous results in rat, and suggests a role in the regulation of GSNO levels in the cytoplasmic and nuclear compartments of the eukaryotic cell.


Assuntos
Aldeído Oxirredutases/metabolismo , Núcleo Celular/enzimologia , Citoplasma/enzimologia , Oxirredutases/metabolismo , S-Nitrosoglutationa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Humanos , Cinética , Fígado/enzimologia
5.
Cell Mol Life Sci ; 58(9): 1323-6, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11577987

RESUMO

A recent finding of a novel class of retinol-active alcohol dehydrogenase (ADH) in frog prompted analysis of this activity in other vertebrate forms. Surprisingly, yet another and still more unrelated ADH was identified in chicken tissues. It was found to be a member of the aldo-keto reductase (AKR) enzyme family, not previously known as an ADH in vertebrates. Its terminal blocking group and the N-terminal segment, not assigned by protein and cDNA structure analysis, were determined by electrospray tandem mass spectrometry after protein isolation by two-dimensional gel electrophoresis. The N terminus is Acetyl-Ala- and the N-terminal segment contains two consecutive Asn residues. The results establish the new ADH enzyme of the AKR family and show the usefulness of combined gel separation and mass spectrometry in enzyme-characterization.


Assuntos
Álcool Desidrogenase/química , Oxirredutases do Álcool/química , Proteoma , Acetilação , Álcool Desidrogenase/genética , Oxirredutases do Álcool/genética , Aldeído Redutase , Aldo-Ceto Redutases , Sequência de Aminoácidos , Animais , Galinhas , Fragmentos de Peptídeos/química , Ranidae , Espectrometria de Massas por Ionização por Electrospray , Vertebrados
6.
Eur J Biochem ; 268(19): 5045-56, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11589695

RESUMO

The localization of alcohol dehydrogenase (ADH) in brain regions would demonstrate active ethanol metabolism in brain during alcohol consumption, which would be a new basis to explain the effects of ethanol in the central nervous system. Tissue sections from several regions of adult rat brain were examined by in situ hybridization to detect the expression of genes encoding ADH1 and ADH4, enzymes highly active with ethanol and retinol. ADH1 mRNA was found in the granular and Purkinje cell layers of cerebellum, in the pyramidal and granule cells of the hippocampal formation and in some cell types of cerebral cortex. ADH4 expression was detected in the Purkinje cells, in the pyramidal and granule cells of the hippocampal formation and in the pyramidal cells of cerebral cortex. High levels of ADH1 and ADH4 mRNAs were detected in the CNS epithelial and vascular tissues: leptomeninges, choroid plexus, ependymocytes of ventricle walls, and endothelium of brain vessels. Histochemical methods detected ADH activity in rodent cerebellar slices, while Western-blot analysis showed ADH4 protein in homogenates from several brain regions. In consequence, small but significant levels of ethanol metabolism can take place in distinct areas of the CNS following alcohol consumption, which could be related to brain damage caused by a local accumulation of acetaldehyde. Moreover, the involvement of ADH in the synthesis of retinoic acid suggests a role for the enzyme in the regulation of adult brain functions. The impairment of retinol oxidation by competitive inhibition of ADH in the presence of ethanol may be an additional origin of CNS abnormalities caused by ethanol.


Assuntos
Álcool Desidrogenase/genética , Encéfalo/enzimologia , RNA Mensageiro/metabolismo , Álcool Desidrogenase/metabolismo , Animais , Western Blotting , Etanol/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Hibridização In Situ , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Frações Subcelulares/enzimologia
7.
Chem Biol Interact ; 130-132(1-3): 425-34, 2001 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-11306064

RESUMO

Using a conserved sequence motif, a new gene (YAL060W) of the MDR family has been identified in Saccharomyces cerevisiae. The expressed protein was a stereoespecific (2R,3R)-2,3-butanediol dehydrogenase (BDH). The best substrates were (2R,3R)-2,3-butanediol for the oxidation and (3R/3S)-acetoin and 1-hydroxy-2-propanone for the reduction reactions. The enzyme is extremely specific for NAD(H) as cofactor, probably because the presence of Glu223 in the cofactor binding site, instead of the highly conserved Asp223. BDH is inhibited competitively by 4-methylpyrazole with a K(i) of 34 microM. Yeast could grow on 2,3-butanediol or acetoin as a sole energy and carbon sources, and a 3.6-fold increase in BDH activity was observed when cells were grown in 2,3-butanediol, suggesting a role of the enzyme in 2,3-butanediol metabolism. However, the disruption of the YAL060W gene was not lethal for the yeast under laboratory conditions, and the disrupted strain could also grow in 2,3-butanediol and acetoin. This suggests that other enzymes, in addition to BDH, can also metabolize 2,3-butanediol in yeast.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Acetoína/metabolismo , Oxirredutases do Álcool/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Butileno Glicóis/metabolismo , Clonagem Molecular , Sequência Conservada , Estabilidade Enzimática , Marcação de Genes , Genes Fúngicos , Concentração de Íons de Hidrogênio , Cinética , NAD/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Especificidade por Substrato
8.
Chem Biol Interact ; 130-132(1-3): 435-44, 2001 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-11306065

RESUMO

Class IV alcohol dehydrogenase shows a deletion at position 117 with respect to class I enzymes, which typically have a Gly residue. In class I structures, Gly117 is part of a loop (residues 114-120) that is highly variable within the alcohol dehydrogenase family. A mutant human class IV enzyme was engineered in which a Gly residue was inserted at position 117 (G117ins). Its kinetic properties, regarding ethanol and primary aliphatic alcohols, secondary alcohols and pH profiles, were determined and compared with the results obtained in previous studies in which the size of the 114-120 loop was modified. For the enzymes considered, a smaller loop was associated with a lower catalytic efficiency towards short-chain alcohols (ethanol and propanol) and secondary alcohols, as well as with a higher K(m) for ethanol at pH 7.5 than at pH 10.0. The effect can be rationalized in terms of a more open, solvent-accessible active site in class IV alcohol dehydrogenase, which disfavors productive binding of ethanol and short-chain alcohols, specially at physiological pH.


Assuntos
Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/química , Álcoois/química , Álcoois/metabolismo , Animais , Domínio Catalítico , Etanol/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Cinética , Modelos Moleculares , Mutagênese Insercional , NAD/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
9.
J Biol Chem ; 276(22): 19132-40, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-11278684

RESUMO

Enzymes of the short chain and medium chain dehydrogenase/reductase families have been demonstrated to participate in the oxidoreduction of ethanol and retinoids. Mammals and amphibians contain, in the upper digestive tract mucosa, alcohol dehydrogenases of the medium chain dehydrogenase/reductase family, active with ethanol and retinol. In the present work, we searched for a similar enzyme in an avian species (Gallus domesticus). We found that chicken does not contain the homologous enzyme from the medium chain dehydrogenase/reductase family but an oxidoreductase from the aldo-keto reductase family, with retinal reductase and alcohol dehydrogenase activities. The amino acid sequence shows 66-69% residue identity with the aldose reductase and aldose reductase-like enzymes. Chicken aldo-keto reductase is a monomer of M(r) 36,000 expressed in eye, tongue, and esophagus. The enzyme can oxidize aliphatic alcohols, such as ethanol, and it is very efficient in all-trans- and 9-cis-retinal reduction (k(cat)/K(m) = 5,300 and 32,000 mm(-1).min(-1), respectively). This finding represents the inclusion of the aldo-keto reductase family, with the (alpha/beta)(8) barrel structure, into the scenario of retinoid metabolism and, therefore, of the regulation of vertebrate development and tissue differentiation.


Assuntos
Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Álcoois/metabolismo , Retinoides/metabolismo , Oxirredutases do Álcool/classificação , Oxirredutases do Álcool/genética , Aldeído Redutase , Aldo-Ceto Redutases , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Galinhas , Clonagem Molecular , DNA Complementar/metabolismo , Eletroforese em Gel de Amido , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Pharmacology ; 61(3): 184-91, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10971204

RESUMO

Alcohol dehydrogenase (ADH) constitutes a complex enzyme system with different forms and extensive multiplicity. A combination of constant and variable properties regarding function, multiplicity and structure of ADH is highlighted for the human system and extended to ADH forms in general. Future perspectives suggest continued studies in specific directions for distinction of metabolic, regulatory and pharmacogenetic roles of ADH.


Assuntos
Álcool Desidrogenase/genética , Farmacogenética , Álcool Desidrogenase/metabolismo , Animais , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo
11.
J Biol Chem ; 275(46): 35876-85, 2000 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-10938079

RESUMO

The completion of the Saccharomyces cerevisiae genome project in 1996 showed that almost 60% of the potential open reading frames of the genome had no experimentally determined function. Using a conserved sequence motif present in the zinc-containing medium-chain alcohol dehydrogenases, we found several potential alcohol dehydrogenase genes with no defined function. One of these, YAL060W, was overexpressed using a multicopy inducible vector, and its protein product was purified to homogeneity. The enzyme was found to be a homodimer that, in the presence of NAD(+), but not of NADP, could catalyze the stereospecific oxidation of (2R,3R)-2, 3-butanediol (K(m) = 14 mm, k(cat) = 78,000 min(-)(1)) and meso-butanediol (K(m) = 65 mm, k(cat) = 46,000 min(-)(1)) to (3R)-acetoin and (3S)-acetoin, respectively. It was unable, however, to further oxidize these acetoins to diacetyl. In the presence of NADH, it could catalyze the stereospecific reduction of racemic acetoin ((3R/3S)- acetoin; K(m) = 4.5 mm, k(cat) = 98,000 min(-)(1)) to (2R,3R)-2,3-butanediol and meso-butanediol, respectively. The substrate stereospecificity was determined by analysis of products by gas-liquid chromatography. The YAL060W gene product can therefore be classified as an NAD-dependent (2R,3R)-2,3-butanediol dehydrogenase (BDH). S. cerevisiae could grow on 2,3-butanediol as the sole carbon and energy source. Under these conditions, a 3. 5-fold increase in (2R,3R)-2,3-butanediol dehydrogenase activity was observed in the total cell extracts. The isoelectric focusing pattern of the induced enzyme coincided with that of the pure BDH (pI 6.9). The disruption of the YAL060W gene was not lethal for the yeast under laboratory conditions. The disrupted strain could also grow on 2,3-butanediol, although attaining a lesser cell density than the wild-type strain. Taking into consideration the substrate specificity of the YAL060W gene product, we propose the name of BDH for this gene. The corresponding enzyme is the first eukaryotic (2R, 3R)-2,3-butanediol dehydrogenase characterized of the medium-chain dehydrogenase/reductase family.


Assuntos
Oxirredutases do Álcool/metabolismo , Genes Fúngicos/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Acetoína/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/isolamento & purificação , Sequência de Aminoácidos , Cromatografia Gasosa , Eletroforese em Gel de Ágar , Indução Enzimática , Focalização Isoelétrica , Cinética , Metaloproteínas/química , Metaloproteínas/genética , Metaloproteínas/isolamento & purificação , Metaloproteínas/metabolismo , Dados de Sequência Molecular , Mutação , NAD/metabolismo , Filogenia , Alinhamento de Sequência , Estereoisomerismo , Especificidade por Substrato , Zinco/metabolismo
12.
J Biol Chem ; 275(33): 25180-7, 2000 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-10829036

RESUMO

Mammalian class IV alcohol dehydrogenase enzymes are characteristic of epithelial tissues, exhibit moderate to high K(m) values for ethanol, and are very active in retinol oxidation. The human enzyme shows a K(m) value for ethanol which is 2 orders of magnitude lower than that of rat class IV. The uniquely significant difference in the substrate-binding pocket between the two enzymes appears to be at position 294, Val in the human enzyme and Ala in the rat enzyme. Moreover, a deletion at position 117 (Gly in class I) has been pointed out as probably responsible for class IV specificity toward retinoids. With the aim of establishing the role of these residues, we have studied the kinetics of the recombinant human and rat wild-type enzymes, the human G117ins and V294A mutants, and the rat A294V mutant toward aliphatic alcohols and retinoids. 9-cis-Retinol was the best retinoid substrate for both human and rat class IV, strongly supporting a role of class IV in the generation of 9-cis-retinoic acid. In contrast, 13-cis retinoids were not substrates. The G117ins mutant showed a decreased catalytic efficiency toward retinoids and toward three-carbon and longer primary aliphatic alcohols, a behavior that resembles that of the human class I enzyme, which has Gly(117). The K(m) values for ethanol dramatically changed in the 294 mutants, where the human V294A mutant showed a 280-fold increase, and the rat A294V mutant a 50-fold decrease, compared with those of the respective wild-type enzymes. This demonstrates that the Val/Ala exchange at position 294 is mostly responsible for the kinetic differences with ethanol between the human and rat class IV. In contrast, the kinetics toward retinoids was only slightly affected by the mutations at position 294, compatible with a more conserved function of mammalian class IV alcohol dehydrogenase in retinoid metabolism.


Assuntos
Álcool Desidrogenase/química , Alanina/química , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Alitretinoína , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA Complementar/metabolismo , Escherichia coli/metabolismo , Etanol/metabolismo , Biblioteca Gênica , Humanos , Isomerismo , Isotretinoína/metabolismo , Cinética , Pulmão/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Retinoides/metabolismo , Especificidade por Substrato , Tretinoína/metabolismo , Valina/química
13.
Hepatology ; 31(4): 984-9, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10733556

RESUMO

Polymorphism at the ADH2 and ADH3 loci of alcohol dehydrogenase (ADH) has been shown to have an effect on the predisposition to alcoholism in Asian individuals. However, the results are not conclusive for white individuals. We have analyzed the ADH genotype of 876 white individuals from Spain (n = 251), France (n = 160), Germany (n = 184), Sweden (n = 88), and Poland (n = 193). Peripheral blood samples from healthy controls and groups of patients with viral cirrhosis and alcohol-induced cirrhosis, as well as alcoholics with no liver disease, were collected on filter paper. Genotyping of the ADH2 and ADH3 loci was performed using polymerase chain reaction-restriction fragment length polymorphism methods on white cell DNA. In healthy controls, ADH2*2 frequencies ranged from 0% (France) to 5.4% (Spain), whereas ADH3*1 frequencies ranged from 47. 6% (Germany) to 62.5% (Sweden). Statistically significant differences were not found, however, between controls from different countries, nor between patients with alcoholism and/or liver disease. When all individuals were grouped in nonalcoholics (n = 451) and alcoholics (n = 425), ADH2*2 frequency was higher in nonalcoholics (3.8%) than in alcoholics (1.3%) (P =.0016), whereas the ADH3 alleles did not show differences. Linkage disequilibrium was found between ADH2 and ADH3, resulting in an association of the alleles ADH2*2 and ADH3*1, both coding for the most active enzymatic forms. In conclusion, the ADH2*2 allele decreases the risk for alcoholism, whereas the ADH2*2 and ADH3*1 alleles are found to be associated in the European population.


Assuntos
Álcool Desidrogenase/genética , Alcoolismo/genética , Alelos , Polimorfismo de Fragmento de Restrição , Adulto , Idoso , Idoso de 80 Anos ou mais , Europa (Continente) , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
14.
J Biol Chem ; 274(53): 37869-75, 1999 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-10608852

RESUMO

Glutathione-dependent formaldehyde dehydrogenase (FALDH) is the main enzymatic system for formaldehyde detoxification in all eukaryotic and many prokaryotic organisms. The enzyme of yeasts and some bacteria exhibits about 10-fold higher k(cat) and K(m) values than those of the enzyme from animals and plants. Typically Thr-269 and Glu-267 are found in the coenzyme-binding site of yeast FALDH, but Ile-269 and Asp-267 are present in the FALDH of animals. By site-directed mutagenesis we have prepared the T269I and the D267E mutants and the D267E/T269I double mutant of Saccharomyces cerevisiae FALDH with the aim of investigating the role of these residues in the kinetics. The T269I and the D267E mutants have identical kinetic properties as compared with the wild-type enzyme, although T269I is highly unstable. In contrast, the D267E/T269I double mutant is stable and shows low K(m) (2.5 microM) and low k(cat) (285 min(-1)) values with S-hydroxymethylglutathione, similar to those of the human enzyme. Therefore, the simultaneous exchange at both residues is the structural basis of the two distinct FALDH kinetic types. The local structural perturbations imposed by the substitutions are suggested by molecular modeling studies. Finally, we have studied the effect of FALDH deletion and overexpression on the growth of S. cerevisiae. It is concluded that the FALDH gene is not essential but enhances the resistance against formaldehyde (0.3-1 mM). Moreover, the wild-type enzyme (with high k(cat) and K(m)) provides more resistance than the double mutant (with low k(cat) and K(m)).


Assuntos
Aldeído Oxirredutases/metabolismo , Coenzimas/metabolismo , Saccharomyces cerevisiae/enzimologia , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/isolamento & purificação , Sequência de Bases , Sítios de Ligação , Primers do DNA , Estabilidade Enzimática , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida
15.
J Biol Chem ; 274(37): 26021-6, 1999 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-10473548

RESUMO

A class IV-type, gastric alcohol dehydrogenase (ADH) has been purified from frog (Rana perezi) tissues, meaning detection of this enzyme type also in nonmammalian vertebrates. However, the protein is unique among vertebrate ADHs thus far characterized in having preference for NADP(+) rather than NAD(+). Similarly, it deviates structurally from other class IV ADHs and has a phylogenetic tree position outside that of the conventional class IV cluster. The NADP(+) preference is structurally correlated with a replacement of Asp-223 of all other vertebrate ADHs with Gly-223, largely directing the coenzyme specificity. This residue replacement is expected metabolically to correlate with a change of the reaction direction catalyzed, from preferential alcohol oxidation to preferential aldehyde reduction. This is of importance in cellular growth regulation through retinoic acid formed from retinol/retinal precursors because the enzyme is highly efficient in retinal reduction (k(cat)/K(m) = 3.4.10(4) mM(-1) min(-1)). Remaining enzymatic details are also particular but resemble those of the human class I/class IV enzymes. However, overall structural relationships are distant (58-60% residue identity), and residues at substrate binding and coenzyme binding positions are fairly deviant, reflecting the formation of the new activity. The results are concluded to represent early events in the duplicatory origin of the class IV line or of a separate, class IV-type line. In both cases, the novel enzyme illustrates enzymogenesis of classes in the ADH system. The early origin (with tetrapods), the activity (with retinoids), and the specific location of this enzyme (gastric, like the gastric and epithelial location of the human class IV enzyme) suggest important functions of the class IV ADH type in vertebrates.


Assuntos
Álcool Desidrogenase/metabolismo , NADP/metabolismo , Retinaldeído/metabolismo , Estômago/enzimologia , Álcool Desidrogenase/química , Álcool Desidrogenase/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Ranidae , Especificidade por Substrato
16.
Biochem Pharmacol ; 58(3): 389-95, 1999 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-10424757

RESUMO

The alcohol dehydrogenase (ADH) gene family encodes enzymes that metabolize a wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. Studies on 19 vertebrate animals have identified ADH orthologs across several species, and this has now led to questions of how best to name ADH proteins and genes. Seven distinct classes of vertebrate ADH encoded by non-orthologous genes have been defined based upon sequence homology as well as unique catalytic properties or gene expression patterns. Each class of vertebrate ADH shares <70% sequence identity with other classes of ADH in the same species. Classes may be further divided into multiple closely related isoenzymes sharing >80% sequence identity such as the case for class I ADH where humans have three class I ADH genes, horses have two, and mice have only one. Presented here is a nomenclature that uses the widely accepted vertebrate ADH class system as its basis. It follows the guidelines of human and mouse gene nomenclature committees, which recommend coordinating names across species boundaries and eliminating Roman numerals and Greek symbols. We recommend that enzyme subunits be referred to by the symbol "ADH" (alcohol dehydrogenase) followed by an Arabic number denoting the class; i.e. ADH1 for class I ADH. For genes we recommend the italicized root symbol "ADH" for human and "Adh" for mouse, followed by the appropriate Arabic number for the class; i.e. ADH1 or Adh1 for class I ADH genes. For organisms where multiple species-specific isoenzymes exist within a class, we recommend adding a capital letter after the Arabic number; i.e. ADH1A, ADH1B, and ADH1C for human alpha, beta, and gamma class I ADHs, respectively. This nomenclature will accommodate newly discovered members of the vertebrate ADH family, and will facilitate functional and evolutionary studies.


Assuntos
Álcool Desidrogenase/classificação , Terminologia como Assunto , Álcool Desidrogenase/genética , Animais , Humanos , Família Multigênica , Polimorfismo Genético , Especificidade da Espécie , Vertebrados
18.
Gut ; 43(5): 612-9, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9824340

RESUMO

BACKGROUND: Ethanol undergoes a first pass metabolism (FPM) in the stomach and liver. Gastric FPM of ethanol primarily depends on the activity of gastric alcohol dehydrogenase (ADH). In addition, the speed of gastric emptying (GE) may modulate both gastric and hepatic FPM of ethanol. AIMS: To study the effect of modulation of GE on FPM of ethanol in the stomach and liver. METHODS: Sixteen volunteers (eight men and eight women) received ethanol (0.225 g/kg body weight) orally and intravenously, and the areas under the ethanol concentration time curves were determined to calculate FPM of ethanol. In seven of these subjects, FPM of ethanol was measured after the intravenous administration of 10 mg metoclopramide (MCP) and 20 mg N-butylscopolamine (NBS) in separate experiments to either accelerate or delay GE. GE was monitored sonographically by integration of the antral area of the stomach every five minutes for 90 minutes after oral ethanol intake. In addition, gastric biopsy specimens were taken to determine ADH activity and phenotype, as well as to evaluate gastric histology. Blood was also drawn for ADH genotyping. RESULTS: GE time was significantly delayed by the administration of NBS as compared with controls (p<0.0001) and as compared with the administration of MCP (p<0.0001). This was associated with a significantly enhanced FPM of ethanol with NBS compared with MCP (p = 0.0004). A significant correlation was noted between GE time and FPM of ethanol (r = 0.43, p = 0.0407). Gastric ADH activity did not significantly correlate with FPM of ethanol. CONCLUSION: FPM of ethanol is strikingly modulated by the speed of GE. Delayed GE increases the time of exposure of ethanol to gastric ADH and may therefore increase gastric FPM of ethanol. In addition, hepatic FPM of ethanol may also be enhanced as the result of slower absorption of ethanol from the small intestine. Thus a knowledge of GE time is a major prerequisite for studying FPM of ethanol in humans.


Assuntos
Etanol/metabolismo , Esvaziamento Gástrico/fisiologia , Mucosa Gástrica/metabolismo , Fígado/metabolismo , Administração Oral , Adulto , Álcool Desidrogenase/metabolismo , Etanol/administração & dosagem , Feminino , Genótipo , Humanos , Infusões Intravenosas , Masculino , Pessoa de Meia-Idade , Fenótipo
19.
Digestion ; 59(4): 314-20, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9693201

RESUMO

BACKGROUND/AIMS: Ethanol is metabolized by alcohol dehydrogenase in the human stomach. This metabolism contributes to the so-called first-pass metabolism of ethanol which is affected by gender, medication, and morphological alterations of the gastric mucosa. Recently, it has been shown that Helicobacter pylori is capable to oxidize ethanol to acetaldehyde in vitro. Since H. pylori also injures gastric mucosa, the present study examines the effect of this bacterium on gastric alcohol dehydrogenase activity and systemic availability of ethanol in vivo. METHODS: Thirteen volunteers (7 men and 6 women, aged 18-52 years) with gastric H. pylori infection diagnosed by a positive CLO test and positive gastric histology received ethanol (0.225 g/kg) either orally or intravenously before and after H. pylori elimination to determine systemic availability of ethanol. In addition, gastric biopsy specimens were taken from all subjects before and after H. pylori elimination for histological assessment of mucosal alterations and determinations of gastric alcohol dehydrogenase activity and phenotype of the enzyme. RESULTS: In the presence of H. pylori the first-pass metabolism of ethanol was found to be significantly reduced (625 +/- 234 vs. 1,155 +/- 114 mg/dl/min, p = 0.046). This reduction of first-pass metabolism of ethanol was associated with a significant decrease in alcohol dehydrogenase activity (4.8 +/- 1.5 vs. 12.1 +/- 2.3 nmol/mg protein x min, p < 0.05) and an increase in the severity of mucosal damage as determined by a histological score (p < 0.05). CONCLUSIONS: H. pylori infection leads to gastric mucosal injury which is associated with a decrease in gastric alcohol dehydrogenase activity and first-pass metabolism of ethanol. Ethanol metabolism by H. pylori does not play an important role in vivo. However, gastric morphology is one important factor determining systemic availability of ethanol in man.


Assuntos
Álcool Desidrogenase/metabolismo , Etanol/metabolismo , Mucosa Gástrica/enzimologia , Infecções por Helicobacter/enzimologia , Adolescente , Adulto , Biópsia , Eletroforese em Gel de Amido , Feminino , Seguimentos , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/patologia , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade
20.
FEBS Lett ; 426(3): 362-6, 1998 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-9600267

RESUMO

Kinetic constants of human class IV alcohol dehydrogenase (sigmasigma-ADH) support a role of the enzyme in retinoid metabolism, fatty acid omega-oxidation, and elimination of cytotoxic aldehydes produced by lipid peroxidation. Class IV is the human ADH form most efficient in the reduction of 4-hydroxynonenal (k(cat)/Km: 39,500 mM(-1) min(-1)). Class IV shows high activity with all-trans-retinol and 9-cis-retinol, while 13-cis-retinol is not a substrate but an inhibitor. Both all-trans-retinoic and 13-cis-retinoic acids are potent competitive inhibitors of retinol oxidation (Ki: 3-10 microM) which can be a basis for the regulation of the retinoic acid generation and of the pharmacological actions of the 13-cis-isomer. The inhibition of class IV retinol oxidation by ethanol (Ki: 6-10 mM) may be the origin of toxic and teratogenic effects of ethanol. H2-receptor antagonists are poor inhibitors of human and rat classes I and IV (Ki > 0.3 mM) suggesting a small interference in ethanol metabolism at the pharmacological doses of these common drugs.


Assuntos
Álcool Desidrogenase/antagonistas & inibidores , Aldeídos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos/metabolismo , Antagonistas dos Receptores H2 da Histamina/farmacologia , Retinoides/metabolismo , Álcool Desidrogenase/metabolismo , Aldeídos/toxicidade , Animais , Ativação Enzimática/efeitos dos fármacos , Humanos , Especificidade de Órgãos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA