Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38328241

RESUMO

Sumoylation is a post-translational modification that can regulate different physiological functions. Increased sumoylation, specifically conjugation of SUMO2/3 (small ubiquitin like modifier 2/3), is detrimental to vascular health. However, the molecular mechanism mediating this effect is poorly understood. Here, we demonstrate that SUMO2 modifies p66Shc, which impairs endothelial function. Using multiple approaches, we show that p66Shc is a direct target of SUMO2. Mass spectrometry identified that SUMO2 modified lysine-81 in the unique collagen homology-2 domain of p66Shc. SUMO2ylation of p66Shc increased phosphorylation at serine-36, causing it to translocate to the mitochondria. Notably, sumoylation-deficient p66Shc (p66ShcK81R) was resistant to SUMO2-induced p66ShcS36 phosphorylation and mitochondrial translocation. Ingenuity pathway analysis showed that majority of effects of p66Shc SUMO2ylation were mediated via p66ShcK81. Finally, p66ShcK81R knockin mice were resistant to SUMO2-induced endothelial dysfunction. Collectively, our work uncovers a posttranslational modification of redox protein p66Shc and identifies SUMO2-p66Shc signaling as a regulator of vascular endothelial function.

2.
Hypertension ; 79(12): 2843-2853, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36259376

RESUMO

BACKGROUND: RGS (regulator of G protein signaling) family members catalyze the termination of G protein signaling cascades. Single nucleotide polymorphisms in the RGS2 gene in humans have been linked to hypertension, preeclampsia, and anxiety disorders. Mice deficient for Rgs2 (Rgs2Null) exhibit hypertension, anxiety, and altered adipose development and function. METHODS: To study cell-specific functions of RGS2, a novel gene-targeted mouse harboring a conditional allele for the Rgs2 gene (Rgs2Flox) was developed. These mice were bred with mice expressing Cre-recombinase via the Agouti-related peptide locus (Agrp-Cre) to cause deletion of Rgs2 from all cells expressing Agrp (Rgs2Agrp-KO), or a novel transgenic mouse expressing Cre-recombinase via the ANG (angiotensin) type 1A receptor (Agtr1a/ AT1A) promoter encoded in a bacterial artificial chromosome (BAC-AT1A-Cre) to delete Rgs2 in all Agtr1a-expressing cells (Rgs2AT1A-KO). RESULTS: Whereas Rgs2Flox, Rgs2Agrp-KO, and BAC-AT1A-Cre mice exhibited normal growth and survival, Rgs2AT1A-KO exhibited pre-weaning lethality. Relative to littermates, Rgs2Agrp-KO exhibited reduced fat gains when maintained on a high fat diet, associated with increased energy expenditure. Similarly, surviving adult Rgs2AT1A-KO mice also exhibited increased energy expenditure. Surprisingly, given the hypertensive phenotype previously reported for Rgs2Null mice and evidence supporting a role for RGS2 in terminating AT1A signaling in various cell types, Rgs2AT1A-KO mice exhibited normal blood pressure, ingestive behaviors, and renal functions, both before and after chronic infusion of ANG (490 ng/kg/min, sc). CONCLUSIONS: These results demonstrate the development of a novel mouse with conditional expression of Rgs2 and illustrate the role of Rgs2 within selected cell types for cardiometabolic control.


Assuntos
Hipertensão , Proteínas RGS , Animais , Camundongos , Proteína Relacionada com Agouti , Hipertensão/genética , Camundongos Knockout , Camundongos Transgênicos , Receptor Tipo 1 de Angiotensina/genética , Recombinases , Proteínas RGS/genética
3.
J Comp Neurol ; 530(18): 3157-3178, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36036349

RESUMO

Neuropeptide S (NPS) increases wakefulness. A small number of neurons in the brainstem express Nps. These neurons are located in or near the parabrachial nucleus (PB), but we know very little about their ontogeny, connectivity, and function. To identify Nps-expressing neurons within the molecular framework of the PB region, we used in situ hybridization, immunofluorescence, and Cre-reporter labeling in mice. The primary concentration of Nps-expressing neurons borders the lateral lemniscus at far-rostral levels of the lateral PB. Caudal to this main cluster, Nps-expressing neurons scatter through the PB and form a secondary concentration medial to the locus coeruleus (LC). Most Nps-expressing neurons in the PB region are Atoh1-derived, Foxp2-expressing, and mutually exclusive with neurons expressing Calca or Lmx1b. Among Foxp2-expressing PB neurons, those expressing Nps are distinct from intermingled subsets expressing Cck or Pdyn. Examining Nps Cre-reporter expression throughout the brain identified novel populations of neurons in the nucleus incertus, anterior hypothalamus, and lateral habenula. This information will help focus experimental questions about the connectivity and function of NPS neurons.


Assuntos
Neurônios , Núcleos Parabraquiais , Animais , Camundongos , Neurônios/metabolismo , Encéfalo/metabolismo , Hibridização In Situ , Tronco Encefálico
4.
J Diabetes Res ; 2021: 5564477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816635

RESUMO

To rigorously explore the role of omega-3 polyunsaturated fatty acids (PUFA) in the treatment of diabetic peripheral neuropathy (DPN), we have created a transgenic mouse utilizing a Cre-lox promoter to control overexpression of human 15-lipoxygenase-1 (15-LOX-1). In this study, we sought to determine the effect of treating type 2 diabetic wild-type mice and transgenic mice ubiquitously overexpressing 15-LOX-1 with menhaden oil on endpoints related to DPN. Wild-type and transgenic mice on a C57Bl/6J background were divided into three groups. Two of each of these groups were used to create a high-fat diet/streptozotocin model for type 2 diabetes. The remaining mice were control groups. Four weeks later, one set of diabetic mice from each group was treated with menhaden oil for twelve weeks and then evaluated using DPN-related endpoints. Studies were also performed using dorsal root ganglion neurons isolated from wild-type and transgenic mice. Wild-type and transgenic diabetic mice developed DPN as determined by slowing of nerve conduction velocity, decreased sensory nerve fibers in the skin and cornea, and impairment of thermal and mechanical sensitivity of the hindpaw compared to their respective control mice. Although not significant, there was a trend for the severity of these DPN-related deficits to be less in the diabetic transgenic mice compared to the diabetic wild-type mice. Treating diabetic wild-type and transgenic mice with menhaden oil improved the DPN-related endpoints with a trend for greater improvement or protection by menhaden oil observed in the diabetic transgenic mice. Treating dorsal root ganglion neurons with docosahexanoic acid but not eicosapentaenoic acid significantly increased neurite outgrowth with greater efficacy observed with neurons isolated from transgenic mice. Targeting pathways that will increase the production of the anti-inflammatory metabolites of omega-3 PUFA may be an efficacious approach to developing an effective treatment for DPN.


Assuntos
Araquidonato 15-Lipoxigenase/fisiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Óleos de Peixe/uso terapêutico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Animais , Araquidonato 15-Lipoxigenase/genética , Diabetes Mellitus Tipo 2/complicações , Neuropatias Diabéticas/etiologia , Ácidos Docosa-Hexaenoicos/sangue , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doenças do Sistema Nervoso Periférico/etiologia
5.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33372138

RESUMO

Precise regulation of coinhibitory receptors is essential for maintaining immune tolerance without interfering with protective immunity, yet the mechanism underlying such a balanced act remains poorly understood. In response to protein immunization, T follicular helper (TFH) cells lacking Tcf1 and Lef1 transcription factors were phenotypically normal but failed to promote germinal center formation and antibody production. Transcriptomic profiling revealed that Tcf1/Lef1-deficient TFH cells aberrantly up-regulated CTLA4 and LAG3 expression, and treatment with anti-CTLA4 alone or combined with anti-LAG3 substantially rectified B-cell help defects by Tcf1/Lef1-deficient TFH cells. Mechanistically, Tcf1 and Lef1 restrain chromatin accessibility at the Ctla4 and Lag3 loci. Groucho/Tle corepressors, which are known to cooperate with Tcf/Lef factors, were essential for TFH cell expansion but dispensable for repressing coinhibitory receptors. In contrast, mutating key amino acids in histone deacetylase (HDAC) domain in Tcf1 resulted in CTLA4 derepression in TFH cells. These findings demonstrate that Tcf1-instrinsic HDAC activity is necessary for preventing excessive CTLA4 induction in protein immunization-elicited TFH cells and hence guarding their B-cell help function.


Assuntos
Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Células T Auxiliares Foliculares/imunologia , Animais , Antígenos CD , Linfócitos B/metabolismo , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/metabolismo , Diferenciação Celular/imunologia , Feminino , Centro Germinativo/imunologia , Fator 1-alfa Nuclear de Hepatócito/imunologia , Tolerância Imunológica , Fator 1 de Ligação ao Facilitador Linfoide/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-6 , Células T Auxiliares Foliculares/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
6.
J Exp Med ; 216(4): 847-866, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30837262

RESUMO

Tcf1 and Lef1 have versatile functions in regulating T cell development and differentiation, but intrinsic requirements for these factors in regulatory T (T reg) cells remain to be unequivocally defined. Specific ablation of Tcf1 and Lef1 in T reg cells resulted in spontaneous multi-organ autoimmunity that became more evident with age. Tcf1/Lef1-deficient T regs showed reduced protection against experimentally induced colitis, indicative of diminished immuno-suppressive capacity. Transcriptomic analysis revealed that Tcf1 and Lef1 were responsible for positive regulation of a subset of T reg-overrepresented signature genes such as Ikzf4 and Izumo1r Unexpectedly, Tcf1 and Lef1 were necessary for restraining expression of cytotoxic CD8+ effector T cell-associated genes in T reg cells, including Prdm1 and Ifng Tcf1 ChIP-seq revealed substantial overlap between Tcf1 and Foxp3 binding peaks in the T reg cell genome, with Tcf1-Foxp3 cooccupancy observed at key T reg signature and cytotoxic effector genes. Our data collectively indicate that Tcf1 and Lef1 are critical for sustaining T reg suppressive functions and preventing loss of self-tolerance.


Assuntos
Fator 1-alfa Nuclear de Hepatócito/metabolismo , Tolerância Imunológica , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/genética , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Feminino , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1 de Ligação ao Facilitador Linfoide/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transcriptoma/imunologia
7.
Obesity (Silver Spring) ; 16(10): 2362-7, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18719666

RESUMO

We developed a high-throughput approach to knockout (KO) and phenotype mouse orthologs of the 5,000 potential drug targets in the human genome. As part of the phenotypic screen, dual-energy X-ray absorptiometry (DXA) technology estimates body-fat stores in eight KO and four wild-type (WT) littermate chow-fed mice from each line. Normalized % body fat (nBF) (mean KO % body fat/mean WT littermate % body fat) values from the first 2322 lines with viable KO mice at 14 weeks of age showed a normal distribution. We chose to determine how well this screen identifies body-fat phenotypes by selecting 13 of these 2322 KO lines to serve as benchmarks based on their published lean or obese phenotype on a chow diet. The nBF values for the eight benchmark KO lines with a lean phenotype were > or =1 s.d. below the mean for seven (perilipin, SCD1, CB1, MCH1R, PTP1B, GPAT1, PIP5K2B) but close to the mean for NPY Y4R. The nBF values for the five benchmark KO lines with an obese phenotype were >2 s.d. above the mean for four (MC4R, MC3R, BRS3, translin) but close to the mean for 5HT2cR. This screen also identifies novel body-fat phenotypes as exemplified by the obese kinase suppressor of ras 2 (KSR2) KO mice. These body-fat phenotypes were confirmed upon studying additional cohorts of mice for KSR2 and all 13 benchmark KO lines. This simple and cost-effective screen appears capable of identifying genes with a role in regulating mammalian body fat.


Assuntos
Absorciometria de Fóton , Tecido Adiposo/fisiopatologia , Adiposidade/genética , Obesidade/fisiopatologia , Magreza/fisiopatologia , Tecido Adiposo/diagnóstico por imagem , Animais , Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Feminino , Genótipo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Obesidade/diagnóstico por imagem , Obesidade/genética , Fenótipo , Reprodutibilidade dos Testes , Magreza/diagnóstico por imagem , Magreza/genética
8.
J Biol Chem ; 281(52): 39982-9, 2006 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-17023421

RESUMO

In liver, glucose-6-phosphatase catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and inorganic phosphate, the final step in the gluconeogenic and glycogenolytic pathways. Mutations in the glucose-6-phosphatase catalytic subunit (G6Pase) give rise to glycogen storage disease (GSD) type 1a, which is characterized in part by hypoglycemia, growth retardation, hypertriglyceridemia, hypercholesterolemia, and hepatic glycogen accumulation. Recently, a novel G6Pase isoform was identified, designated UGRP/G6Pase-beta. The activity of UGRP relative to G6Pase in vitro is disputed, raising the question as to whether G6P is a physiologically important substrate for this protein. To address this issue we have characterized the phenotype of UGRP knock-out mice. G6P hydrolytic activity was decreased by approximately 50% in homogenates of UGRP(-/-) mouse brain relative to wild type tissue, consistent with the ability of UGRP to hydrolyze G6P. In addition, female, but not male, UGRP(-/-) mice exhibit growth retardation as do G6Pase(-/-) mice and patients with GSD type 1a. However, in contrast to G6Pase(-/-) mice and patients with GSD type 1a, UGRP(-/-) mice exhibit no change in hepatic glycogen content, blood glucose, or triglyceride levels. Although UGRP(-/-) mice are not hypoglycemic, female UGRP(-/-) mice have elevated ( approximately 60%) plasma glucagon and reduced ( approximately 20%) plasma cholesterol. We hypothesize that the hyperglucagonemia prevents hypoglycemia and that the hypocholesterolemia is secondary to the hyperglucagonemia. As such, the phenotype of UGRP(-/-) mice is mild, indicating that G6Pase is the major glucose-6-phosphatase of physiological importance for glucose homeostasis in vivo.


Assuntos
Domínio Catalítico/genética , Colesterol/sangue , Regulação para Baixo/genética , Deleção de Genes , Glucagon/biossíntese , Glucose-6-Fosfatase/genética , Proteínas/genética , Regulação para Cima/genética , Animais , Feminino , Regulação da Expressão Gênica/genética , Glucose/metabolismo , Glucose-6-Fosfatase/biossíntese , Glucose-6-Fosfatase/fisiologia , Doença de Depósito de Glicogênio Tipo I/enzimologia , Doença de Depósito de Glicogênio Tipo I/genética , Homeostase/genética , Isoenzimas/deficiência , Isoenzimas/genética , Isoenzimas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidades Proteicas/deficiência , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Proteínas/fisiologia , Secretoglobinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...