Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 72(4): 759-776, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38225726

RESUMO

Regenerative abilities are not evenly distributed across the animal kingdom. The underlying modalities are also highly variable. Retinal repair can involve the mobilization of different cellular sources, including ciliary marginal zone (CMZ) stem cells, the retinal pigmented epithelium (RPE), or Müller glia. To investigate whether the magnitude of retinal damage influences the regeneration modality of the Xenopus retina, we developed a model based on cobalt chloride (CoCl2 ) intraocular injection, allowing for a dose-dependent control of cell death extent. Analyses in Xenopus laevis revealed that limited CoCl2 -mediated neurotoxicity only triggers cone loss and results in a few Müller cells reentering the cell cycle. Severe CoCl2 -induced retinal degeneration not only potentializes Müller cell proliferation but also enhances CMZ activity and unexpectedly triggers RPE reprogramming. Surprisingly, reprogrammed RPE self-organizes into an ectopic mini-retina-like structure laid on top of the original retina. It is thus likely that the injury paradigm determines the awakening of different stem-like cell populations. We further show that these cellular sources exhibit distinct neurogenic capacities without any bias towards lost cells. This is particularly striking for Müller glia, which regenerates several types of neurons, but not cones, the most affected cell type. Finally, we found that X. tropicalis also has the ability to recruit Müller cells and reprogram its RPE following CoCl2 -induced damage, whereas only CMZ involvement was reported in previously examined degenerative models. Altogether, these findings highlight the critical role of the injury paradigm and reveal that three cellular sources can be reactivated in the very same degenerative model.


Assuntos
Cobalto , Degeneração Retiniana , Animais , Xenopus laevis/fisiologia , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/metabolismo , Retina , Regeneração/fisiologia , Proliferação de Células , Neuroglia/metabolismo
2.
J Vis Exp ; (200)2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37902314

RESUMO

Retinal neurodegenerative diseases are the leading causes of blindness. Among numerous therapeutic strategies being explored, stimulating self-repair recently emerged as particularly appealing. A cellular source of interest for retinal repair is the Müller glial cell, which harbors stem cell potential and an extraordinary regenerative capacity in anamniotes. This potential is, however, very limited in mammals. Studying the molecular mechanisms underlying retinal regeneration in animal models with regenerative capabilities should provide insights into how to unlock the latent ability of mammalian Müller cells to regenerate the retina. This is a key step for the development of therapeutic strategies in regenerative medicine. To this aim, we developed several retinal injury paradigms in Xenopus: a mechanical retinal injury, a transgenic line allowing for nitroreductase-mediated photoreceptor conditional ablation, a retinitis pigmentosa model based on CRISPR/Cas9-mediated rhodopsin knockout, and a cytotoxic model driven by intraocular CoCl2 injections. Highlighting their advantages and disadvantages, we describe here this series of protocols that generate various degenerative conditions and allow the study of retinal regeneration in Xenopus.


Assuntos
Retina , Retinose Pigmentar , Animais , Xenopus laevis , Larva , Retina/metabolismo , Animais Geneticamente Modificados , Retinose Pigmentar/metabolismo , Mamíferos
3.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37768732

RESUMO

Retinitis pigmentosa (RP) is the most common inherited retinal disease (IRD) and is characterized by photoreceptor degeneration and progressive vision loss. We report 4 patients presenting with RP from 3 unrelated families with variants in TBC1D32, which to date has never been associated with an IRD. To validate TBC1D32 as a putative RP causative gene, we combined Xenopus in vivo approaches and human induced pluripotent stem cell-derived (iPSC-derived) retinal models. Our data showed that TBC1D32 was expressed during retinal development and that it played an important role in retinal pigment epithelium (RPE) differentiation. Furthermore, we identified a role for TBC1D32 in ciliogenesis of the RPE. We demonstrated elongated ciliary defects that resulted in disrupted apical tight junctions, loss of functionality (delayed retinoid cycling and altered secretion balance), and the onset of an epithelial-mesenchymal transition-like phenotype. Last, our results suggested photoreceptor differentiation defects, including connecting cilium anomalies, that resulted in impaired trafficking to the outer segment in cones and rods in TBC1D32 iPSC-derived retinal organoids. Overall, our data highlight a critical role for TBC1D32 in the retina and demonstrate that TBC1D32 mutations lead to RP. We thus identify TBC1D32 as an IRD-causative gene.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Retinose Pigmentar , Humanos , Retina , Retinose Pigmentar/genética , Degeneração Retiniana/genética , Epitélio Pigmentado da Retina , Proteínas Adaptadoras de Transdução de Sinal
4.
Cells ; 11(5)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269429

RESUMO

Retinitis pigmentosa is an inherited retinal dystrophy that ultimately leads to blindness due to the progressive degeneration of rod photoreceptors and the subsequent non-cell autonomous death of cones. Rhodopsin is the most frequently mutated gene in this disease. We here developed rhodopsin gene editing-based models of retinitis pigmentosa in two Xenopus species, Xenopus laevis and Xenopus tropicalis, by using CRISPR/Cas9 technology. In both of them, loss of rhodopsin function results in massive rod cell degeneration characterized by progressive shortening of outer segments and occasional cell death. This is followed by cone morphology deterioration. Despite these apparently similar degenerative environments, we found that Müller glial cells behave differently in Xenopus laevis and Xenopus tropicalis. While a significant proportion of Müller cells re-enter into the cell cycle in Xenopus laevis, their proliferation remains extremely limited in Xenopus tropicalis. This work thus reveals divergent responses to retinal injury in closely related species. These models should help in the future to deepen our understanding of the mechanisms that have shaped regeneration during evolution, with tremendous differences across vertebrates.


Assuntos
Retinose Pigmentar , Rodopsina , Animais , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Células Ependimogliais/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
5.
Development ; 146(10)2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31036545

RESUMO

A hallmark of Wnt/ß-Catenin signaling is the extreme diversity of its transcriptional response, which varies depending on the cell and developmental context. What controls this diversity is poorly understood. In all cases, the switch from transcriptional repression to activation depends on a nuclear increase in ß-Catenin, which detaches the transcription factor T cell factor 7 like 1 (Tcf7l1) bound to Groucho (Gro) transcriptional co-repressors from its DNA-binding sites and transiently converts Tcf7/Lymphoid enhancer binding factor 1 (Lef1) into a transcriptional activator. One of the earliest and evolutionarily conserved functions of Wnt/ß-Catenin signaling is the induction of the blastopore lip organizer. Here, we demonstrate that the evolutionarily conserved BarH-like homeobox-2 (Barhl2) protein stabilizes the Tcf7l1-Gro complex and maintains the repressed expression of Tcf target genes by a mechanism that depends on histone deacetylase 1 (Hdac-1) activity. In this way, Barhl2 switches off the Wnt/ß-Catenin-dependent early transcriptional response, thereby limiting the formation of the organizer in time and/or space. This study reveals a novel nuclear inhibitory mechanism of Wnt/Tcf signaling that switches off organizer fate determination.


Assuntos
Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Organizadores Embrionários/metabolismo , Fatores de Transcrição TCF/metabolismo , beta Catenina/metabolismo , Animais , Feminino , Proteínas de Homeodomínio/genética , Imunoprecipitação , Hibridização In Situ , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Plasmídeos/genética , Fatores de Transcrição TCF/genética , Xenopus laevis , beta Catenina/genética
6.
PLoS One ; 13(4): e0193606, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29672592

RESUMO

Wnt proteins form a family of highly conserved secreted molecules that are critical mediators of cell-cell signaling during embryogenesis. Partial data on Wnt activity in different tissues and at different stages have been reported in frog embryos. Our objective here is to provide a coherent and detailed description of Wnt activity throughout embryo development. Using a transgenic Xenopus tropicalis line carrying a Wnt-responsive reporter sequence, we depict the spatial and temporal dynamics of canonical Wnt activity during embryogenesis. We provide a comprehensive series of in situ hybridization in whole-mount embryos and in cross-sections, from gastrula to tadpole stages, with special focus on neural tube, retina and neural crest cell development. This collection of patterns will thus constitute a valuable resource for developmental biologists to picture the dynamics of Wnt activity during development.


Assuntos
Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas de Xenopus/metabolismo , Xenopus/embriologia , Animais , Gástrula/metabolismo , Hibridização In Situ , Crista Neural/metabolismo , Tubo Neural/metabolismo , Proteínas Wnt/genética , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/genética
7.
Neural Dev ; 12(1): 16, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28863786

RESUMO

BACKGROUND: Amacrine interneurons that modulate synaptic plasticity between bipolar and ganglion cells constitute the most diverse cell type in the retina. Most are inhibitory neurons using either GABA or glycine as neurotransmitters. Although several transcription factors involved in amacrine cell fate determination have been identified, mechanisms underlying amacrine cell subtype specification remain to be further understood. The Prdm13 histone methyltransferase encoding gene is a target of the transcription factor Ptf1a, an essential regulator of inhibitory neuron cell fate in the retina. Here, we have deepened our knowledge on its interaction with Ptf1a and investigated its role in amacrine cell subtype determination in the developing Xenopus retina. METHODS: We performed prdm13 gain and loss of function in Xenopus and assessed the impact on retinal cell fate determination using RT-qPCR, in situ hybridization and immunohistochemistry. RESULTS: We found that prdm13 in the amphibian Xenopus is expressed in few retinal progenitors and in about 40% of mature amacrine cells, predominantly in glycinergic ones. Clonal analysis in the retina reveals that prdm13 overexpression favours amacrine cell fate determination, with a bias towards glycinergic cells. Conversely, knockdown of prdm13 specifically inhibits glycinergic amacrine cell genesis. We also showed that, as in the neural tube, prdm13 is subjected to a negative autoregulation in the retina. Our data suggest that this is likely due to its ability to repress the expression of its inducer, ptf1a. CONCLUSIONS: Our results demonstrate that Prdm13, downstream of Ptf1a, acts as an important regulator of glycinergic amacrine subtype specification in the Xenopus retina. We also reveal that Prdm13 regulates ptf1a expression through a negative feedback loop.


Assuntos
Células Amácrinas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Neurogênese/fisiologia , Retina/embriologia , Proteínas de Xenopus/metabolismo , Células Amácrinas/citologia , Animais , Retroalimentação Fisiológica/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Glicina/metabolismo , Retina/metabolismo , Xenopus laevis
8.
J Cell Biol ; 216(6): 1849-1864, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28495838

RESUMO

Usher syndrome type 1 (USH1) causes combined hearing and sight defects, but how mutations in USH1 genes lead to retinal dystrophy in patients remains elusive. The USH1 protein complex is associated with calyceal processes, which are microvilli of unknown function surrounding the base of the photoreceptor outer segment. We show that in Xenopus tropicalis, these processes are connected to the outer-segment membrane by links composed of protocadherin-15 (USH1F protein). Protocadherin-15 deficiency, obtained by a knockdown approach, leads to impaired photoreceptor function and abnormally shaped photoreceptor outer segments. Rod basal outer disks displayed excessive outgrowth, and cone outer segments were curved, with lamellae of heterogeneous sizes, defects also observed upon knockdown of Cdh23, encoding cadherin-23 (USH1D protein). The calyceal processes were virtually absent in cones and displayed markedly reduced F-actin content in rods, suggesting that protocadherin-15-containing links are essential for their development and/or maintenance. We propose that calyceal processes, together with their associated links, control the sizing of rod disks and cone lamellae throughout their daily renewal.


Assuntos
Caderinas/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Segmento Externo da Célula Bastonete/metabolismo , Síndromes de Usher/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Caderinas/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Larva/genética , Larva/metabolismo , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Segmento Externo das Células Fotorreceptoras da Retina/ultraestrutura , Segmento Externo da Célula Bastonete/ultraestrutura , Síndromes de Usher/genética , Síndromes de Usher/patologia , Xenopus/embriologia , Xenopus/genética , Proteínas de Xenopus/genética
9.
Elife ; 4: e08488, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26393999

RESUMO

The adult frog retina retains a reservoir of active neural stem cells that contribute to continuous eye growth throughout life. We found that Yap, a downstream effector of the Hippo pathway, is specifically expressed in these stem cells. Yap knock-down leads to an accelerated S-phase and an abnormal progression of DNA replication, a phenotype likely mediated by upregulation of c-Myc. This is associated with an increased occurrence of DNA damage and eventually p53-p21 pathway-mediated cell death. Finally, we identified PKNOX1, a transcription factor involved in the maintenance of genomic stability, as a functional and physical interactant of YAP. Altogether, we propose that YAP is required in adult retinal stem cells to regulate the temporal firing of replication origins and quality control of replicated DNA. Our data reinforce the view that specific mechanisms dedicated to S-phase control are at work in stem cells to protect them from genomic instability.


Assuntos
Divisão Celular , Período de Replicação do DNA , Instabilidade Genômica , Retina/citologia , Células-Tronco/fisiologia , Transativadores/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Xenopus , Proteínas de Sinalização YAP
10.
PLoS One ; 9(3): e92113, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24643195

RESUMO

In contrast with the wealth of data involving bHLH and homeodomain transcription factors in retinal cell type determination, the molecular bases underlying neurotransmitter subtype specification is far less understood. Using both gain and loss of function analyses in Xenopus, we investigated the putative implication of the bHLH factor Ascl1 in this process. We found that in addition to its previously characterized proneural function, Ascl1 also contributes to the specification of the GABAergic phenotype. We showed that it is necessary for retinal GABAergic cell genesis and sufficient in overexpression experiments to bias a subset of retinal precursor cells towards a GABAergic fate. We also analysed the relationships between Ascl1 and a set of other bHLH factors using an in vivo ectopic neurogenic assay. We demonstrated that Ascl1 has unique features as a GABAergic inducer and is epistatic over factors endowed with glutamatergic potentialities such as Neurog2, NeuroD1 or Atoh7. This functional specificity is conferred by the basic DNA binding domain of Ascl1 and involves a specific genetic network, distinct from that underlying its previously demonstrated effects on catecholaminergic differentiation. Our data show that GABAergic inducing activity of Ascl1 requires the direct transcriptional regulation of Ptf1a, providing therefore a new piece of the network governing neurotransmitter subtype specification during retinogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Retina/metabolismo , Transcrição Gênica , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Neurônios/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Retina/citologia , Transdução de Sinais , Proteínas de Xenopus/genética , Xenopus laevis/embriologia
11.
Dev Biol ; 386(2): 340-57, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24370451

RESUMO

The basic helix-loop-helix (bHLH) transcriptional activator Ptf1a determines inhibitory GABAergic over excitatory glutamatergic neuronal cell fate in progenitors of the vertebrate dorsal spinal cord, cerebellum and retina. In an in situ hybridization expression survey of PR domain containing genes encoding putative chromatin-remodeling zinc finger transcription factors in Xenopus embryos, we identified Prdm13 as a histone methyltransferase belonging to the Ptf1a synexpression group. Gain and loss of Ptf1a function analyses in both frog and mice indicates that Prdm13 is positively regulated by Ptf1a and likely constitutes a direct transcriptional target. We also showed that this regulation requires the formation of the Ptf1a-Rbp-j complex. Prdm13 knockdown in Xenopus embryos and in Ptf1a overexpressing ectodermal explants lead to an upregulation of Tlx3/Hox11L2, which specifies a glutamatergic lineage and a reduction of the GABAergic neuronal marker Pax2. It also leads to an upregulation of Prdm13 transcription, suggesting an autonegative regulation. Conversely, in animal caps, Prdm13 blocks the ability of the bHLH factor Neurog2 to activate Tlx3. Additional gain of function experiments in the chick neural tube confirm that Prdm13 suppresses Tlx3(+)/glutamatergic and induces Pax2(+)/GABAergic neuronal fate. Thus, Prdm13 is a novel crucial component of the Ptf1a regulatory pathway that, by modulating the transcriptional activity of bHLH factors such as Neurog2, controls the balance between GABAergic and glutamatergic neuronal fate in the dorsal and caudal part of the vertebrate neural tube.


Assuntos
Diferenciação Celular/fisiologia , Neurônios GABAérgicos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Tubo Neural/embriologia , Proteínas de Xenopus/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Embrião de Galinha , Primers do DNA/genética , Eletroporação , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Imuno-Histoquímica , Imunoprecipitação , Hibridização In Situ , Camundongos , Tubo Neural/citologia , Fator de Transcrição PAX2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Xenopus/genética , Xenopus laevis
12.
Stem Cells ; 30(12): 2784-95, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22969013

RESUMO

The retina of fish and amphibian contains genuine neural stem cells located at the most peripheral edge of the ciliary marginal zone (CMZ). However, their cell-of-origin as well as the mechanisms that sustain their maintenance during development are presently unknown. We identified Hes4 (previously named XHairy2), a gene encoding a bHLH-O transcriptional repressor, as a stem cell-specific marker of the Xenopus CMZ that is positively regulated by the canonical Wnt pathway and negatively by Hedgehog signaling. We found that during retinogenesis, Hes4 labels a small territory, located first at the pigmented epithelium (RPE)/neural retina (NR) border and later in the retinal margin, that likely gives rise to adult retinal stem cells. We next addressed whether Hes4 might impart this cell subpopulation with retinal stem cell features: inhibited RPE or NR differentiation programs, continuous proliferation, and slow cell cycle speed. We could indeed show that Hes4 overexpression cell autonomously prevents retinal precursor cells from commitment toward retinal fates and maintains them in a proliferative state. Besides, our data highlight for the first time that Hes4 may also constitute a crucial regulator of cell cycle kinetics. Hes4 gain of function indeed significantly slows down cell division, mainly through the lengthening of G1 phase. As a whole, we propose that Hes4 maintains particular stemness features in a cellular cohort dedicated to constitute the adult retinal stem cell pool, by keeping it in an undifferentiated and slowly proliferative state along embryonic retinogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Células-Tronco Neurais/citologia , Retina/citologia , Retina/embriologia , Proteínas de Xenopus/biossíntese , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Processos de Crescimento Celular/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Imuno-Histoquímica , Masculino , Células-Tronco Neurais/metabolismo , Retina/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/embriologia , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais , Via de Sinalização Wnt , Proteínas de Xenopus/genética , Xenopus laevis
13.
Development ; 139(19): 3499-509, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22899850

RESUMO

Continuous neurogenesis in the adult nervous system requires a delicate balance between proliferation and differentiation. Although Wnt/ß-catenin and Hedgehog signalling pathways are thought to share a mitogenic function in adult neural stem/progenitor cells, it remains unclear how they interact in this process. Adult amphibians produce retinal neurons from a pool of neural stem cells localised in the ciliary marginal zone (CMZ). Surprisingly, we found that perturbations of the Wnt and Hedgehog pathways result in opposite proliferative outcomes of neural stem/progenitor cells in the CMZ. Additionally, our study revealed that Wnt and Hedgehog morphogens are produced in mutually exclusive territories of the post-embryonic retina. Using genetic and pharmacological tools, we found that the Wnt and Hedgehog pathways exhibit reciprocal inhibition. Our data suggest that Sfrp-1 and Gli3 contribute to this negative cross-regulation. Altogether, our results reveal an unexpected antagonistic interplay of Wnt and Hedgehog signals that may tightly regulate the extent of neural stem/progenitor cell proliferation in the Xenopus retina.


Assuntos
Proliferação de Células , Proteínas Hedgehog/fisiologia , Retina/embriologia , Retina/crescimento & desenvolvimento , Via de Sinalização Wnt/fisiologia , Animais , Animais Geneticamente Modificados , Proliferação de Células/efeitos dos fármacos , Antagonismo de Drogas , Embrião não Mamífero , Inibidores Enzimáticos/farmacologia , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Indóis/farmacologia , Modelos Biológicos , Organogênese/efeitos dos fármacos , Organogênese/genética , Organogênese/fisiologia , Oximas/farmacologia , Receptor Cross-Talk/efeitos dos fármacos , Receptor Cross-Talk/fisiologia , Retina/efeitos dos fármacos , Retina/metabolismo , Teratogênicos/farmacologia , Alcaloides de Veratrum/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Xenopus laevis/embriologia
14.
Dev Neurobiol ; 72(4): 491-506, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22275214

RESUMO

Neural stem cell research suffers from a lack of molecular markers to specifically assess stem or progenitor cell properties. The organization of the Xenopus ciliary marginal zone (CMZ) in the retina allows the spatial distinction of these two cell types: stem cells are confined to the most peripheral region, while progenitors are more central. Despite this clear advantage, very few genes specifically expressed in retinal stem cells have been discovered so far in this model. To gain insight into the molecular signature of these cells, we performed a large-scale expression screen in the Xenopus CMZ, establishing it as a model system for stem cell gene profiling. Eighteen genes expressed specifically in the CMZ stem cell compartment were retrieved and are discussed here. These encode various types of proteins, including factors associated with proliferation, mitotic spindle organization, DNA/RNA processing, and cell adhesion. In addition, the publication of this work in a special issue on Xenopus prompted us to give a more general illustration of the value of large-scale screens in this model species. Thus, beyond neural stem cell specific genes, we give a broader highlight of our screen outcome, describing in particular other retinal cell markers that we found. Finally, we present how these can all be easily retrieved through a novel module we developed in the web-based annotation tool XenMARK, and illustrate the potential of this powerful searchable database in the context of the retina.


Assuntos
Biomarcadores/análise , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Células-Tronco Neurais/citologia , Retina/citologia , Animais , Sequência de Bases , Biomarcadores/metabolismo , Hibridização In Situ , Dados de Sequência Molecular , Células-Tronco Neurais/metabolismo , Reação em Cadeia da Polimerase , Retina/metabolismo , Xenopus
15.
Dev Dyn ; 238(6): 1379-88, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19347954

RESUMO

The precise localization of gene expression within the developing embryo, and how it changes over time, is one of the most important sources of information for elucidating gene function. As a searchable resource, this information has up until now been largely inaccessible to the Xenopus community. Here, we present a new database of Xenopus gene expression patterns, queryable by specific location or region in the embryo. Pattern matching can be driven either from an existing in situ image, or from a user-defined pattern based on development stage schematic diagrams. The data are derived from the work of a group of 21 Xenopus researchers over a period of 4 days. We used a novel, rapid manual annotation tool, XenMARK, which exploits the ability of the human brain to make the necessary distortions in transferring data from the in situ images to the standard schematic geometry. Developmental Dynamics 238:1379-1388, 2009. (c) 2009 Wiley-Liss, Inc.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Expressão Gênica , Xenopus laevis/embriologia , Xenopus laevis/genética , Animais , Humanos , Software , Xenopus laevis/anatomia & histologia
16.
BMC Dev Biol ; 7: 110, 2007 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-17910758

RESUMO

BACKGROUND: In recent years, considerable knowledge has been gained on the molecular mechanisms underlying retinal cell fate specification. However, hitherto studies focused primarily on the six major retinal cell classes (five types of neurons of one type of glial cell), and paid little attention to the specification of different neuronal subtypes within the same cell class. In particular, the molecular machinery governing the specification of the two most abundant neurotransmitter phenotypes in the retina, GABAergic and glutamatergic, is largely unknown. In the spinal cord and cerebellum, the transcription factor Ptf1a is essential for GABAergic neuron production. In the mouse retina, Ptf1a has been shown to be involved in horizontal and most amacrine neurons differentiation. RESULTS: In this study, we examined the distribution of neurotransmitter subtypes following Ptf1a gain and loss of function in the Xenopus retina. We found cell-autonomous dramatic switches between GABAergic and glutamatergic neuron production, concomitant with profound defects in the genesis of amacrine and horizontal cells, which are mainly GABAergic. Therefore, we investigated whether Ptf1a promotes the fate of these two cell types or acts directly as a GABAergic subtype determination factor. In ectodermal explant assays, Ptf1a was found to be a potent inducer of the GABAergic subtype. Moreover, clonal analysis in the retina revealed that Ptf1a overexpression leads to an increased ratio of GABAergic subtypes among the whole amacrine and horizontal cell population, highlighting its instructive capacity to promote this specific subtype of inhibitory neurons. Finally, we also found that within bipolar cells, which are typically glutamatergic interneurons, Ptf1a is able to trigger a GABAergic fate. CONCLUSION: Altogether, our results reveal for the first time in the retina a major player in the GABAergic versus glutamatergic cell specification genetic pathway.


Assuntos
Linhagem da Célula , Neurônios/citologia , Retina/citologia , Fatores de Transcrição/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Sequência de Bases , Primers do DNA , Imuno-Histoquímica , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Xenopus laevis
17.
J Neuropathol Exp Neurol ; 66(1): 57-65, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17204937

RESUMO

Central core disease (CCD) and multi-minicore disease (MmD) are muscle disorders characterized by foci of mitochondria depletion and sarcomere disorganization ("cores") in muscle fibers. Although core myopathies are the most frequent congenital myopathies, their pathogenesis remains elusive and specific diagnostic markers are lacking. Core myopathies are mostly caused by mutations in 2 sarcoplasmic reticulum proteins: the massive Ca-release channel RyR1 or the selenoprotein N (SelN) of unknown function. To search for distinctive markers and to obtain further pathophysiological insight, we identified the molecular defects in 12 core myopathy patients and analyzed the immunolocalization of 6 proteins of the Ca-release complex in their muscle biopsies. In 7 cases with RYR1 mutations (6 CCD, one MmD), RyR1 was depleted from the cores; in contrast, the other proteins of the sarcoplasmic reticulum (calsequestrin, SERCA1/2, and triadin) and the T-tubule (dihydropyridine receptor-alpha1subunit) accumulated within or around the lesions, suggesting an original modification of the Ca-release complex protein arrangement. Conversely, all Ca-related proteins were distributed normally in 5 MmD cases with SelN mutations. Our results provide an appropriate tool to orientate the differential and molecular diagnosis of core myopathies and suggest that different pathophysiological mechanisms lead to core formation in SelN- and in RyR1-related core myopathies.


Assuntos
Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Mutação , Adolescente , Adulto , Biomarcadores/metabolismo , Calsequestrina/metabolismo , Proteínas de Transporte/metabolismo , Criança , Análise Mutacional de DNA , Humanos , Imuno-Histoquímica/métodos , Microscopia Eletrônica de Transmissão/métodos , Modelos Biológicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Doenças Musculares/classificação , Doenças Musculares/genética , Miopatia da Parte Central/genética , Miopatia da Parte Central/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patologia , Selenoproteínas/genética , Selenoproteínas/metabolismo
18.
Genes Dev ; 20(21): 3036-48, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17079690

RESUMO

Hedgehog signaling has been linked to cell proliferation in a variety of systems; however, its effects on the cell cycle have not been closely studied. In the vertebrate retina, Hedgehog's effects are controversial, with some reports emphasizing increased proliferation and others pointing to a role in cell cycle exit. Here we demonstrate a novel role for Hedgehog signaling in speeding up the cell cycle in the developing retina by reducing the length of G1 and G2 phases. These fast cycling cells tend to exit the cell cycle early. Conversely, retinal progenitors with blocked Hedgehog signaling cycle more slowly, with longer G1 and G2 phases, and remain in the cell cycle longer. Hedgehog may modulate cell cycle kinetics through activation of the key cell cycle activators cyclin D1, cyclin A2, cyclin B1, and cdc25C. These findings support a role for Hedgehog in regulating the conversion from slow cycling stem cells to fast cycling transient amplifying progenitors that are closer to cell cycle exit.


Assuntos
Diferenciação Celular , Proteínas Hedgehog/fisiologia , Neurônios/fisiologia , Retina/crescimento & desenvolvimento , Células-Tronco/fisiologia , Animais , Ciclo Celular/genética , Proteínas de Ciclo Celular/agonistas , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/genética , Neurônios/citologia , Retina/citologia , Transdução de Sinais , Células-Tronco/citologia , Xenopus
19.
AJNR Am J Neuroradiol ; 25(9): 1516-23, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15502130

RESUMO

BACKGROUND AND PURPOSE: Although the subthalamic nucleus is the most frequently used target for surgical treatment of Parkinson's disease, the criteria on which it can be identified on T2-weighted images have never been clearly defined. This study was conducted to characterize the precise anatomic distribution of T2-weighted hyposignal in the subthalamic region and to correlate this hyposignal with iron content in the subthalamic nucleus. METHODS: The T2-weighted MR imaging acquisitions of 15 patients with Parkinson's disease were fused with a digitized version of the Schaltenbrand and Wahren anatomic atlas. The MR signal intensity within the anatomic limits of the subthalamic nucleus was evaluated. An anatomic specimen obtained at autopsy was used to evaluate iron content. RESULTS: In all patients, the subthalamic nucleus was hypointense on both sides in the anterior half of the nucleus. At more posterior levels of the nucleus, hypointensity was less frequently observed (20-80%). Hypointensity was never observed at the most posterior pole. Iron was present in the anteromedial part of the nucleus but absent at the most posterior levels. CONCLUSION: The hypointense signal intensity located lateral to the red nucleus and dorsolateral to the substantia nigra correlates with the presence of iron and corresponds anatomically to the subthalamic nucleus. It can therefore be used as a landmark for electrode implantation in patients with Parkinson's disease. It should, however, be emphasized that although hypointensity was always present in the anterior half of the subthalamic nucleus, the posterior part of the nucleus was not visible in most cases.


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/estatística & dados numéricos , Doença de Parkinson/cirurgia , Técnicas Estereotáxicas/estatística & dados numéricos , Núcleo Subtalâmico/patologia , Adulto , Idoso , Mapeamento Encefálico , Feminino , Humanos , Ferro/metabolismo , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , Sensibilidade e Especificidade , Estatística como Assunto
20.
Neurobiol Dis ; 14(2): 218-28, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14572444

RESUMO

Behavioral analyses of mice intoxicated by the parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine (MPTP) have generated conflicting results. We therefore analyzed the relationship between behavioral changes, loss of monoamine levels, and loss of dopaminergic cell bodies in groups of mice intoxicated with acute or subchronic MPTP protocols. Despite a higher degree of neuronal loss in the mice intoxicated using subchronic protocols, dopamine loss was severe and homogeneous in the striatum in all groups. Dopamine levels were less severely reduced in the frontal cortex in the three groups of MPTP-intoxicated mice. Norepinephrine and serotonin levels in the striatum were decreased only in the mice intoxicated with the acute protocol. The most surprising result was that the mice intoxicated with the subchronic protocols were more active than the saline-treated mice. As reported in rats with dopamine depletion in the prefrontal cortex, the hyperactivity observed in our mice could be due to the reduced dopamine levels detected in this structure.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Monoaminas Biogênicas/metabolismo , Corpo Estriado/metabolismo , Atividade Motora/fisiologia , Substância Negra/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Substância Negra/efeitos dos fármacos , Substância Negra/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...