Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 12(1): 94-104, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38268895

RESUMO

Nutrition outcomes (undernutrition, overweight, and obesity) among women are growing concerns across the globe. Currently, the rate of undernutrition and overweight among women in Nigeria is ranked among the highest in Africa. A major contributory factor reported is unstable food prices in the country. This study, therefore, examined the effects of food prices on nutrition outcomes among women in Nigeria. Secondary datasets retrieved from two different sources were used for this study. Cross-sectional data on weight and height for women were obtained from Nigeria Health Demographic Survey (NHDS). Data on monthly prices of the selected food items were obtained from the Nigeria Bureau of Statistics (NBS). The data were categorized into energy dense (yam tuber, garri, rice, and maize) and nutrient dense (egg, beef, and chicken). Multinomial logit regression was used to estimate the relationship between the prices of energy and nutrient-dense food prices concerning respondents' personal and environmental characteristics such as age, wealth status, and region; as well as the three nutrition outcomes for women (undernutrition, overnutrition, and obesity). This study revealed that the prevalence of overweight and obesity among women was 19.9% and 10.3%, respectively. Nutrition outcomes (obesity and overweight) were positively correlated with the price of energy-dense food with 0.2% and 0.3%, respectively. Nutrient-dense food price is negatively correlated with undernutrition with a probability of 0.1%. The study recommends that food policy instruments such as food prices and subsidies can be introduced to favor the consumption of healthier food to stem the prevalence of overweight and obesity in Nigeria.

2.
ACS Omega ; 9(2): 2183-2191, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250401

RESUMO

The development of new materials from marine resources presents a significant challenge due to the complexity of the associated materials and biology technologies. During this work, the snail shell, which naturally increases in thickness over time to protect the snail, has been identified as one of them. In this study, we investigated the use of powdered snail shells as a potential alternative to ceramics in the creation of customized composites. Our main objective is to explore the hydrothermal decomposition of the snail shell powder to remove undesirable components. To achieve this, we crushed and ground-washed dead snail shells and subjected them to hydrothermal decomposition using an autoclave and furnace at a temperature of 200, 220, 250, or 300 °C. We then analyzed the resulting samples using scanning electron microscope/energy-dispersive X-ray spectroscopy (SEM/EDS) and X-ray diffraction (XRD) techniques to determine changes in their composition and structure. Our findings demonstrate that all samples contained the elements Ca, C, and O, as confirmed by SEM/EDS results. XRD results show that hydrothermal decomposition at 250 °C led to good crystallization with maximum peak intensities observed at various diffraction angles. This indicates that the resulting material may have promising properties for use in composite materials. Overall, our study provides valuable insights into the use of snail shell powder as a potential material source for customized composites. Future studies could explore the optimization of the hydrothermal decomposition process and investigate the mechanical properties of the resulting materials to further develop this promising avenue of research.

3.
Sci Rep ; 13(1): 22652, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114723

RESUMO

The present investigation focuses on the fabrication of Copper-High Entropy Alloy (HEA) surface Metal Matrix Composite (MMC) using the solid-state Friction Stir Process (FSP) and the characterization of wear characteristics. Higher hardness values at the level of 770HV were the cornerstone in its selection, in addition to identifying several appropriate considerations for combining the AlCoCrCuFe HEA in Cu-HEA surface MMCs. Because of the combination of FSP and HEA, the produced composite had a fine microstructure and increased hardness. The wear test is carried out using pin-on-disc equipment for all conceivable parameter combinations to thoroughly analyze wear qualities, with velocity, load, as well as sliding distance chosen as input parameters. The wear rate decreases dramatically with HEA additions and rises with sliding velocity, load, and sliding distance. The impact of HEA addition on the Coefficient of Friction (CoF) during a dry sliding wear test is opposed to its influence on wear rate. The wear parameters such as load, sliding speed, and sliding distance possess a positive correlation with the wear rate and a negative correlation with a coefficient of friction. The applied load has a severe effect on wear rate and CoF when compared to other wear parameters considered. Scanning Electron Microscope (SEM) micrographs of the worn surface were utilized to analyze the wear process, which clearly showed that the copper's wear resistance improved with the addition of HEA.

4.
ACS Omega ; 8(50): 47897-47904, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144101

RESUMO

To mitigate the adverse effects of fossil fuel-based energy, mankind is in constant search of clean and cost-effective sources of energy, such as solar energy. The economic viability of a power plant to harness solar energy mostly depends on the efficiency of solar panels. Investigations over the years show that the solar panel efficiency significantly depends on the different meteorological parameters. Therefore, there is an imminent need for a correlation explaining the relations between the efficiency and different meteorological parameters. In this study, an effort has been made to analyze the effects of various meteorological parameters on the efficiency and subsequently propose a correlation between them. Initial investigations reveal that the optimal tilt angle for the maximum power output is 26°. The study demonstrates that efficiency is directly proportional to solar intensity and wind speed while being inversely proportional to temperature, humidity, and dew point temperature. Regression analysis of a data set comprising 100 data sets establishes a strong correlation between efficiency and five meteorological parameters: temperature, humidity, wind speed, solar intensity, and dew factor. The calculated efficiencies using the developed correlation deviate from the experimental values, with absolute errors ranging from 0.08 to 1.20%. The findings provided valuable insights for optimizing solar power plant performance by understanding the relationship between efficiency and meteorological parameters.

5.
ACS Omega ; 8(46): 43771-43791, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027312

RESUMO

There is a lack of information about the detailed characterization of biomass of Nigerian origin. This study presents a comprehensive characterization of six biomass, groundnut shells, corncob, cashew leaves, Ixora coccinea (flame of the woods), sawdust, and lemongrass, to aid appropriate selection for bio-oil production. The proximate, ultimate, calorific value and compositional analyses were carried out following the American Standard for Testing and Materials (ASTM) standards. Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and X-ray fluorescence were employed in this study for functional group analyses, thermal stability, and structural analyses. The H/C and O/C atomic ratios, fuel ratio, ignitability index, and combustibility index of the biomass samples were evaluated. Groundnut shells, cashew leaves, and lemongrass were identified as promising feedstocks for bio-oil production based on their calorific values (>20 MJ/kg). Sawdust exhibited favorable characteristics for bio-oil production as indicated by its higher volatile matter (79.28%), low ash content (1.53%), low moisture content (6.18%), and high fixed carbon content (13.01%). Also, all samples showed favorable ignition and flammability properties. The low nitrogen (<0.12%) and sulfur (<0.04%) contents in the samples make them environmentally benign fuels as a lower percentage of NOx and SOx will be released during the production of the bio-oil. These results are contributions to the advancement of a sustainable and efficient carbon-neutral energy mix, promoting biomass resource utilization for the generation of energy.

6.
ACS Omega ; 8(42): 39680-39689, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901496

RESUMO

Employing Psidium guajava (P. guajava) extract from leaves, copper oxide nanoparticles (CuO NPs), likewise referred to as cupric oxide and renowned for their sustainable and harmless biogenesis, have the possibility of being useful for the purification of pollutants as well as for medicinal purposes. The current study examined the generated CuO NPs and their physical qualities by using ultraviolet-visible (UV) spectroscopy. The distinctive peak at 265 nm of the CuO NP production was originally seen. Additionally, an X-ray diffraction (XRD) investigation was conducted to identify the crystalline arrangement of the produced CuO NPs, and a Fourier transform infrared (FTIR) spectroscopy examination was performed to validate the functional compounds of the CuO NPs. Additionally, the synthesized nanoparticles' catalytic activities (wastewater treatment) were analyzed in dark and sunlight modes. The catalytic properties of CuO NPs in total darkness resulted in 64.21% discoloration, whereas exposure to sunshine increased the nanomaterials' catalyst performance to 92.31%. By lowering Cr(VI), Ni, Pb, Co, and Cd in sewage by proportions of 91.4, 80.8, 68.26, 73.25, and 72.4% accordingly, the CuO NP demonstrated its effectiveness as a nanosorbent. Total suspended solids (TSS), total dissolved solids (TDS), chemical oxygen demand (COD), biological demand for oxygen (BOD), and conductance were all successfully reduced by nanotreatment of tanning effluents, with proportion reductions of 93.24, 88.62, 94.21, 87.5, and 98.3%, correspondingly.

7.
Heliyon ; 9(6): e16531, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37274679

RESUMO

Additive manufacturing technology and its benefits have a significant impact on different industrial applications. The 3D printing technologies help manufacture lightweight intricate geometrical designs with enhanced strengths. The present study investigates the blended effects of previously recommended parameters of different infill patterns (line, triangle, and concentric) and infill densities (75, 80, and 85%) with varying thicknesses of layers (100, 200, and 300 µm). The test samples were created through Fused Filament Fabrication (FFF) technology using Acrylonitrile Butadiene Styrene (ABS) 3D printing. Mechanical properties were evaluated through tensile and impact strength tests conducted in accordance with ASTM standards. The experimental investigation reveals that the infill pattern greatly affected both tensile and impact strength. The best results were obtained with a concentric infill pattern, along with 80% infill density and 100 µm layer thickness. These conditions resulted in 123% and 115% higher tensile strength and 168% and 80% higher impact strength compared to line and triangle patterns, respectively.

8.
Bioinorg Chem Appl ; 2023: 1731931, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125143

RESUMO

One of the more enticing, ecologically responsible, as well as safe and sustainable methodologies is eco-friendly nanomaterial synthesis. Vegetation materials will be used as reductants instead of toxic substances for synthesising nanoparticles. The current study used Ruellia tuberosa (RT) leaf extract digest to synthesise FeO nanomaterials, which were then characterised using XRD. Following that, microbially produced FeO molecules were mixed with a Kevlar-based polymeric matrix to study the blended consequences. To examine the interbreeding, the current experimental analyses were performed, including both static and dynamic mechanical characteristics. The addition of FeO nanofillers improved the elastic modulus, tensile strength, and storage modulus of the nanocomposite. Impact force uptake has been raised to a certain extent by the addition of nanoparticles. The findings of this research show that incorporating FeO nanofillers into Kevlar fabrics is a promising technique for increasing the mechanical characteristics of hybrid laminated composites. As per DMA evaluation, the sample without nanomaterials had a more volcanic lava response, which is a useful thing for body systems for missile use. Another critical aspect of a nanoparticles-filled nanocomposite that must be addressed is the relatively uniform scattering of padding as well as the development of interfacial adhesion in such a combination. The presence of FeO fillers in polymeric composites is confirmed by XRD analysis.

9.
Bioinorg Chem Appl ; 2022: 7470263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959227

RESUMO

Industrial wastes contain more toxins that get dissolved in the rivers and lakes, which are means of freshwater reservoirs. The contamination of freshwater leads to various issues for microorganisms and humans. This paper proposes a novel method to remove excess copper from the water. The nanotubes are used as a powder in membrane form to remove the copper from the water. The multiwalled carbon nanotube is widely used as a membrane for filtration. It contains many graphene layers of nm size that easily adsorbs the copper when the water permeates through it. Activated carbon is the earliest and most economical method that also adsorbs copper to a certain extent. This paper proposes the methods of involving the activated carbon in the multiwalled carbon nanotube to improve the adsorption capability of the copper. Here, activated carbon is impregnated on the multiwalled carbon nanotube's defect and imperfect surface areas. It makes more adsorption sites on the surface, increasing the adsorption amount. The same method is applied to Hydroxyl functionalized multiwalled carbon nanotubes. Both the methods showed better results and increased the copper removal. The functionalized method removed 93.82% copper, whereas the nonfunctionalized method removed 80.62% copper from the water.

10.
Bioinorg Chem Appl ; 2022: 7192919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186053

RESUMO

Naturally obtained materials are preferable for the production of biomedicine in biomedical applications. Acacia gum is has recently become a hopeful one in the biomedicine production due to its excellent properties, namely, emulsifier, stabilizing mediator, suspending agent, etc. In this novel work, we synthesised and characterized the deesterified Acacia gum-alginate nanohydrogel (DEA-AG NPs) as a carrier for amethopterin (ATN) delivery. This combination is used in the drug effectiveness and tissue engineering. In this work, the Taguchi route is implemented for estimating of particle size and zeta potential (mV) through optimization. Following three parameters are considered for this work: DEA solution concentration (0.008, 0.016, 0.024, and 0.032 w/v %), alginate molecular weight (3, 6, 9, and 12 MW), and ATN/DEA ratio (1 : 4, 1 : 8, 1 : 12, and 1 : 16 w/w %). In particle size analysis and zeta potential analysis, the DEA solution concentration is highly influenced. Minimum particle size is found as 148.50 nm. Similarly, maximum zeta potential is identified as 29.5 mV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...