Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ultrasound Med ; 41(6): 1509-1524, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34553780

RESUMO

OBJECTIVES: Early placental volume (PV) has been associated with small-for-gestational-age infants born under the 10th/5th centiles (SGA10/SGA5). Manual or semiautomated PV quantification from 3D ultrasound (3DUS) is time intensive, limiting its incorporation into clinical care. We devised a novel convolutional neural network (CNN) pipeline for fully automated placenta segmentation from 3DUS images, exploring the association between the calculated PV and SGA. METHODS: Volumes of 3DUS obtained from singleton pregnancies at 11-14 weeks' gestation were automatically segmented by our CNN pipeline trained and tested on 99/25 images, combining two 2D and one 3D models with downsampling/upsampling architecture. The PVs derived from the automated segmentations (PVCNN ) were used to train multivariable logistic-regression classifiers for SGA10/SGA5. The test performance for predicting SGA was compared to PVs obtained via the semiautomated VOCAL (GE-Healthcare) method (PVVOCAL ). RESULTS: We included 442 subjects with 37 (8.4%) and 18 (4.1%) SGA10/SGA5 infants, respectively. Our segmentation pipeline achieved a mean Dice score of 0.88 on an independent test-set. Adjusted models including PVCNN or PVVOCAL were similarly predictive of SGA10 (area under curve [AUC]: PVCNN  = 0.780, PVVOCAL  = 0.768). The addition of PVCNN to a clinical model without any PV included (AUC = 0.725) yielded statistically significant improvement in AUC (P < .05); whereas PVVOCAL did not (P = .105). Moreover, when predicting SGA5, including the PVCNN (0.897) brought statistically significant improvement over both the clinical model (0.839, P = .015) and the PVVOCAL model (0.870, P = .039). CONCLUSIONS: First trimester PV measurements derived from our CNN segmentation pipeline are significantly associated with future SGA. This fully automated tool enables the incorporation of including placental volumetric biometry into the bedside clinical evaluation as part of a multivariable prediction model for risk stratification and patient counseling.


Assuntos
Placenta , Ultrassonografia Pré-Natal , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Pequeno para a Idade Gestacional , Placenta/diagnóstico por imagem , Gravidez , Primeiro Trimestre da Gravidez , Ultrassonografia Pré-Natal/métodos
2.
J Med Imaging (Bellingham) ; 7(1): 014004, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32118089

RESUMO

Purpose: Placental size in early pregnancy has been associated with important clinical outcomes, including fetal growth. However, extraction of placental size from three-dimensional ultrasound (3DUS) requires time-consuming interactive segmentation methods and is prone to user variability. We propose a semiautomated segmentation technique that requires minimal user input to robustly measure placental volume from 3DUS images. Approach: For semiautomated segmentation, a single, central 2D slice was manually annotated to initialize an automated multi-atlas label fusion (MALF) algorithm. The dataset consisted of 47 3DUS volumes obtained at 11 to 14 weeks in singleton pregnancies (28 anterior and 19 posterior). Twenty-six of these subjects were imaged twice within the same session. Dice overlap and surface distance were used to quantify the automated segmentation accuracy compared to expert manual segmentations. The mean placental volume measurements obtained by our method and VOCAL (virtual organ computer-aided analysis), a leading commercial semiautomated method, were compared to the manual reference set. The test-retest reliability was also assessed. Results: The overlap between our automated segmentation and manual (mean Dice: 0.824 ± 0.061 , median: 0.831) was within the range reported by other methods requiring extensive manual input. The average surface distance was 1.66 ± 0.96 mm . The correlation coefficient between test-retest volumes was r = 0.88 , and the intraclass correlation was ICC ( 1 ) = 0.86 . Conclusions: MALF is a promising method that can allow accurate and reliable segmentation of the placenta with minimal user interaction. Further refinement of this technique may allow for placental biometry to be incorporated into clinical pregnancy surveillance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...