Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(40): 15033-15041, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37756488

RESUMO

Phosphorus metabolites occupy a unique place in cellular function as critical intermediates and products of cellular metabolism. Human blood is the most widely used biospecimen in the clinic and in the metabolomics field, and hence an ability to profile phosphorus metabolites in blood, quantitatively, would benefit a wide variety of investigations of cellular functions in health and diseases. Mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy are the two premier analytical platforms used in the metabolomics field. However, detection and quantitation of phosphorus metabolites by MS can be challenging due to their lability, high polarity, structural isomerism, and interaction with chromatographic columns. The conventionally used 1H NMR, on the other hand, suffers from poor resolution of these compounds. As a remedy, 31P NMR promises an important alternative to both MS and 1H NMR. However, numerous challenges including the instability of phosphorus metabolites, their chemical shift sensitivity to solvent composition, pH, salt, and temperature, and the lack of identified metabolites have so far restricted the scope of 31P NMR. In the current study, we describe a method to analyze nearly 25 phosphorus metabolites in blood using a simple one-dimensional (1D) NMR spectrum. Establishment of the identity of unknown metabolites involved a combination of (a) comprehensively analyzing an array of 1D and two-dimensional (2D) 1H/31P homonuclear and heteronuclear NMR spectra of blood; (b) mapping the central carbon metabolic pathway; (c) developing and using 1H and 31P spectral and chemical shift databases; and finally (d) confirming the putative metabolite peaks with spiking using authentic compounds. The resulting simple 1D 31P NMR-based method offers an ability to visualize and quantify the levels of intermediates and products of multiple metabolic pathways, including central carbon metabolism, in one step. Overall, the findings represent a new dimension for blood metabolite analysis and are anticipated to greatly impact the blood metabolomics field.


Assuntos
Carbono , Metabolômica , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Espectrometria de Massas
2.
Langmuir ; 37(33): 10126-10134, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34369796

RESUMO

We synthesize and characterize a triblock polymer with asymmetric tetramethoxyazobenzene (TMAB) and ß-cyclodextrin functionalization, taking advantage of the well-characterized azobenzene derivative-cyclodextrin inclusion complex to promote photoresponsive, self-contained folding of the polymer in an aqueous system. We use 1H NMR to show the reversibility of (E)-to-(Z) and (Z)-to-(E) TMAB photoisomerization, and evaluate the thermal stability of (Z)-TMAB and the comparatively rapid acid-catalyzed thermal (Z)-to-(E) isomerization. Important for its potential use as a functional material, we show the photoisomerization cyclability of the polymeric TMAB chromophore and calculate isomerization quantum yields by extinction spectroscopy. To verify self-inclusion of the polymeric TMAB and cyclodextrin, we use two-dimensional 1H NOESY NMR data to show proximity of TMAB and cyclodextrin in the (E)-state only; however, (Z)-TMAB is not locally correlated with cyclodextrin. Finally, the observed decrease in photoisomerization quantum yield for the dual-functionalized polymer compared to the isolated chromophore in an aqueous solution confirms TMAB and ß-cyclodextrin not only are in proximity to one another, but also form the inclusion complex.


Assuntos
Ciclodextrinas , Polímeros Responsivos a Estímulos , beta-Ciclodextrinas , Espectroscopia de Ressonância Magnética , Polímeros
3.
Am J Kidney Dis ; 78(2): 226-235.e1, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33421453

RESUMO

RATIONALE & OBJECTIVE: The clearance of protein-bound solutes by the proximal tubules is an innate kidney mechanism for removing putative uremic toxins that could exert cardiovascular toxicity in humans. However, potential associations between impaired kidney clearances of secretory solutes and cardiovascular events among patients with chronic kidney disease (CKD) remains uncertain. STUDY DESIGN: A multicenter, prospective, cohort study. SETTING & PARTICIPANTS: We evaluated 3,407 participants from the Chronic Renal Insufficiency Cohort (CRIC) study. EXPOSURES: Baseline kidney clearances of 8 secretory solutes. We measured concentrations of secretory solutes in plasma and paired 24-hour urine specimens using liquid chromatography-tandem mass spectrometry (LC-MS/MS). OUTCOMES: Incident heart failure, myocardial infarction, and stroke events. ANALYTICAL APPROACH: We used Cox regression to evaluate associations of baseline secretory solute clearances with incident study outcomes adjusting for estimated GFR (eGFR) and other confounders. RESULTS: Participants had a mean age of 56 years; 45% were women; 41% were Black; and the median estimated glomerular filtration rate (eGFR) was 43 mL/min/1.73 m2. Lower 24-hour kidney clearance of secretory solutes were associated with incident heart failure and myocardial infarction but not incident stroke over long-term follow-up after controlling for demographics and traditional risk factors. However, these associations were attenuated and not statistically significant after adjustment for eGFR. LIMITATIONS: Exclusion of patients with severely reduced eGFR at baseline; measurement variability in secretory solutes clearances. CONCLUSIONS: In a national cohort study of CKD, no clinically or statistically relevant associations were observed between the kidney clearances of endogenous secretory solutes and incident heart failure, myocardial infarction, or stroke after adjustment for eGFR. These findings suggest that tubular secretory clearance provides little additional information about the development of cardiovascular disease events beyond glomerular measures of GFR and albuminuria among patients with mild-to-moderate CKD.


Assuntos
Insuficiência Cardíaca/epidemiologia , Túbulos Renais/metabolismo , Infarto do Miocárdio/epidemiologia , Insuficiência Renal Crônica/metabolismo , Acidente Vascular Cerebral/epidemiologia , Idoso , Albuminúria , Cromatografia Líquida , Estudos de Coortes , Cresóis/metabolismo , Feminino , Taxa de Filtração Glomerular , Glicina/análogos & derivados , Glicina/metabolismo , Humanos , Incidência , Indicã/metabolismo , Ácido Cinurênico/metabolismo , Masculino , Pessoa de Meia-Idade , Transportadores de Ânions Orgânicos/metabolismo , Modelos de Riscos Proporcionais , Estudos Prospectivos , Ácido Piridóxico/metabolismo , Insuficiência Renal Crônica/epidemiologia , Ribonucleosídeos/metabolismo , Ésteres do Ácido Sulfúrico/metabolismo , Espectrometria de Massas em Tandem , Xantinas/metabolismo
4.
J Am Soc Mass Spectrom ; 31(9): 1974-1980, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32808771

RESUMO

Although most peptide bonds in proteins exist in the trans configuration, when cis peptide bonds do occur, they can have major impact on protein structure and function. The rapid identification of cis peptide bonds is therefore an important task. Peptide bonds containing proline are more likely to adopt the cis configuration because the ring connecting the side chain and backbone in proline flattens the energetic landscape relative to amino acids with free side chains. Examples of cis proline isomers have been identified in both solution and in the gas phase by a variety of structure-probing methods. Mass spectrometry is an attractive potential method for identifying cis proline due to its speed and sensitivity; however, the question remains of whether cis/trans proline isomers originating in solution are preserved during ionization and manipulation within a mass spectrometer. Herein, we investigate the gas-phase stability of isolated solution-phase cis and trans proline isomers using a synthetic peptide sequence with a Tyr-Pro-Pro motif. A variety of dissociation methods were explored to evaluate their potential to distinguish cis/trans configuration, including collision-induced dissociation, radical-directed dissociation, and photodissociation. Only photodissociation employed in conjunction with extremely gentle electrospray and charge solvation by 18-crown-6 ether was able to distinguish cis/trans isomers for our model peptide, suggesting that any thermal activation during transfer or while in the gas phase leads to isomer scrambling. Furthermore, the necessity for 18-crown-6 suggests that intramolecular charge solvation taking place during electrospray ionization can override cis/trans isomer homogeneity. Overall, the results suggest that solution-phase cis/trans proline isomers are fragile and easily lost during electrospray, requiring careful selection of instrument parameters and consideration of charge solvation to prevent cis/trans scrambling.

5.
Biophys J ; 97(9): 2640-7, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19883608

RESUMO

Iron oxide superparamagnetic nanoparticles (SPIONs) have drawn significant attention because of their potential impact on medical diagnosis and therapy. However, the difficulty of achieving reliable and standardized quantification of these nanoparticles has limited the uniform study of nanoparticle systems. Current measurement techniques have limited sensitivity, and are sophisticated and subject to individual instrumental settings. Here, a characterization method using proton nuclear magnetic resonance ((1)H-NMR) spectroscopy is presented that can quantify SPIONs regardless of surface modification. In addition to routine quantification of SPIONs during nanoparticle development, the method can also be used with in vitro nanoparticle assays and potentially with tissue samples for biodistribution studies. Specifically, measurement of water relaxivity shifts (R(1) or R(2)) of dissolved SPION samples is correlated with nanoparticle concentration. Unmodified and dextran- and poly(ethylene glycol)-coated SPIONs gave linear correlations between SPION concentration and R(1) and R(2) relaxivities over five orders of magnitude, to below 10 ppb iron. Quantification of SPION concentration was also demonstrated in the presence of RAW 264.7 macrophage cells. A linear correlation between the SPION concentration and relaxivities was observed to <10 ng Fe/mL. This method is a rapid and inexpensive approach for quantitation of SPIONs and exhibits a number of advantages over many of the current methods for quantitative SPION analysis.


Assuntos
Biofísica/métodos , Espectroscopia de Ressonância Magnética/métodos , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Animais , Carbocianinas/química , Dextranos/química , Relação Dose-Resposta a Droga , Compostos Férricos/química , Macrófagos/metabolismo , Magnetismo , Camundongos , Polietilenoglicóis/química , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...