Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MRS Bull ; 46(9): 822-831, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539059

RESUMO

Abstract: The COVID-19 pandemic triggered a surge in demand for N95 or equivalent respirators that the global supply chain was unable to satisfy. This shortage in critical equipment has inspired research that addresses the immediate problems and has accelerated the development of the next-generation filtration media and respirators. This article provides a brief review of the most recent work with regard to face respirators and filtration media. We discuss filtration efficiency of the widely utilized cloth masks. Next, the sterilization of and reuse of existing N95 respirators to extend the existing stockpile is discussed. To expand near-term supplies, optimization of current manufacturing methods, such as melt-blown processes and electrospinning, has been explored. Future manufacturing methods have been investigated to address long-term supply shortages. Novel materials with antiviral and sterilizable properties with the ability for multiple reuses have been developed and will contribute to the development of the next generation of longer lasting multi-use N95 respirators. Finally, additively manufactured respirators are reviewed, which enable a rapidly deployable source of reusable respirators that can use any filtration fabric.

2.
Materials (Basel) ; 13(15)2020 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722569

RESUMO

Extrusion based additive manufacturing of polymer composite magnets can increase the solid loading volume fraction with greater mechanical force through the printing nozzle as compared to traditional injection molding process. About 63 vol% of isotropic NdFeB magnet powders were compounded with 37 vol% of polyphenylene sulfide and bonded permanent magnets were fabricated while using Big Area Additive Manufacturing without any degradation in magnetic properties. The polyphenylene sulfide bonded magnets have a tensile stress of 20 MPa, almost double than that of nylon bonded permanent magnets. Additively manufactured and surface-protective-resin coated bonded magnets meet the industrial stability criterion of up to 175 °C with a flux-loss of 2.35% over 1000 h. They also exhibit better corrosion resistance behavior when exposed to acidic (pH = 1.35) solution for 24 h and also annealed at 80 °C over 100 h (at 95% relative humidity) over without coated magnets. Thus, polyphenylene sulfide bonded, additively manufactured, protective resin coated bonded permanent magnets provide better thermal, mechanical, and magnetic properties.

3.
Heliyon ; 5(11): e02804, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31768437

RESUMO

High silicon (Si) electrical steel has the potential for efficient use in applications such as electrical motors and generators with cost-effective in processing, but it is difficult to manufacture. Increasing the Si content beyond 3 wt.% improves magnetic and electrical properties, with 6.5 wt.% being achievable. The main goal of this research is to design, develop, and implement a scalable additive manufacturing process to fabricate Fe with 6.5 wt.% Si (Fe-6Si) steel with high magnetic permeability, high electrical resistivity, low coercivity, and low residual induction that other methods cannot achieve because of manufacturing limitations. Binder jet additive manufacturing was used to deposit near net shape components that were subsequently sintered via solid-state sintering to achieve near full densification. Here, it is shown that the use of solid-state sintering mitigates cracking since no rapid solidification occurs unlike fusion-based additive technologies. The Fe-6Si samples demonstrated an ultimate tensile strength of 434 MPa, electrical resistivity of 98 µΩ cm, and saturation magnetization of 1.83 T with low coercivity and high permeability. The results strongly supports to replace the only available 0.1 mm thick chemical vapor deposition (CVD) produced Si steel using the cost effective AM method with good mechanical and magnetic properties for motor applications.

4.
ChemSusChem ; 12(7): 1316-1324, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30759316

RESUMO

The transformation of MXene sheets into TiOF2 2D sheets with superior electrochemical performance was developed. MXene synthesized from Ti3 AlC2 was fluorinated for 3, 6, and 24 h, respectively, by means of a direct fluorination process. Exposure of MXene powder to elemental fluorine for 3 h induced the formation of CF2 groups and TiF3 on the surface, which have beneficial effects on the electrochemical performance. X-ray photoelectron spectroscopy suggested that after fluorinating the MXene sample for 6 h Ti2+ and Ti3+ were not present on the surface but only Ti4+ , indicating the formation of TiOF2 . XRD indicated that TiOF2 was present after fluorinating for 3 h, and after 24 h the MXene had transformed to TiOF2 with minor impurities remaining, maintaining its 2D layer morphology. The 24 h fluorinated sample with its TiOF2 phase showed superior capacity that increased with cycle number. It also had a better rate capability than non-2D-layered TiOF2 , indicating the advantage of the 2D-layered morphology derived from the parent MXene phase.

5.
Sci Rep ; 6: 36212, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27796339

RESUMO

Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.

6.
Chem Commun (Camb) ; 52(8): 1713-6, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26666453

RESUMO

A novel hybrid battery utilizing an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl3) (EMImCl-AlCl3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. The hybrid ion battery delivers an initial high capacity of 160 mA h g(-1) at a current rate of C/5. It also shows good rate capability and cycling performance.

7.
ChemSusChem ; 8(21): 3576-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26404735

RESUMO

Recycling hazardous wastes to produce value-added products is becoming essential for the sustainable progress of our society. Herein, highly porous carbon (1625 m(2) g(-1)) is synthesized using waste tires as the precursor and used as a supercapacitor electrode material. The narrow pore-size distribution and high surface area led to good charge storage capacity, especially when used as a three-dimensional nanoscaffold to polymerize polyaniline (PANI). The composite paper was highly flexible, conductive, and exhibited a capacitance of 480 F g(-1) at 1 mV s(-1) with excellent capacitance retention of up to 98% after 10,000 charge/discharge cycles. The high capacitance and long cycle life were ascribed to the short diffusional paths, uniform PANI coating, and tight confinement of the PANI in the inner pores of the tire-derived carbon through π-π interactions, which minimized the degradation of the PANI upon cycling. We anticipate that the same strategy can be applied to deposit other pseudocapacitive materials to achieve even higher electrochemical performance and longer cycle life-a key challenge for redox active polymers.


Assuntos
Carbono/química , Resíduos Perigosos , Nanocompostos/química , Papel , Polímeros/química , Capacitância Elétrica , Eletrodos , Porosidade , Eliminação de Resíduos , Análise Espectral Raman , Propriedades de Superfície
8.
Nano Lett ; 15(2): 1062-9, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25564924

RESUMO

Scanning probe microscopy (SPM) is a powerful tool to investigate electrochemistry in nanoscale volumes. While most SPM-based studies have focused on reactions at the tip-surface junction, charge and mass conservation requires coupled and intrinsically nonlocal cathodic and anodic processes that can be significantly affected by ambient humidity. Here, we explore the role of water in both cathodic and anodic processes, associated charge transport, and topographic volume changes depending on the polarity of tip bias. The first-order reversal curve current-voltage technique combined with simultaneous detection of the sample topography, referred to as FORC-IVz, was applied to a silver solid ion conductor. We found that the protons generated from water affect silver ionic conduction, silver particle formation and dissolution, and mechanical integrity of the material. This work highlights the dual nature (simultaneously local and nonlocal) of electrochemical SPM studies, which should be considered for comprehensive understanding of nanoscale electrochemistry.


Assuntos
Eletroquímica , Umidade , Nanotecnologia , Prata/química , Microscopia de Varredura por Sonda
9.
Langmuir ; 30(3): 900-10, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24400670

RESUMO

We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum Brunauer-Emmett-Teller (BET) specific surface area of 1148 m(2)/g and a pore volume of 1.0 cm(3)/g. Both physical and chemical activation enhanced the mesoporosity along with significant microporosity. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited a range of surface-area-based capacitance similar to that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and enhanced the gravimetric specific capacitance of the mesoporous carbons. A vertical tail in the lower-frequency domain of the Nyquist plot provided additional evidence of good supercapacitor behavior for the activated mesoporous carbons. We have modeled the equivalent circuit of the Nyquist plot with the help of two constant phase elements (CPE). Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.

10.
Adv Mater ; 25(44): 6459-63, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24114810

RESUMO

A strategy to enhance the catalytic activity at the surface of an oxide thin film is unveiled through epitaxial orientation control of the surface oxygen vacancy concentration. By tuning the direction of the oxygen vacancy channels (OVCs) in the brownmillerite SrCoO2.5 , a 100-fold improvement in the oxygen reduction kinetics is realized in an epitaxial thin film that has the OVCs open to the surface.

12.
ACS Nano ; 3(2): 273-8, 2009 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19236061

RESUMO

Vertically aligned, dense ZnO nanorod arrays were grown directly on zinc foils by a catalyst-free, low-temperature (450-500 degrees C) oxidization method. The zinc foils remain conductive even after the growth of ZnO nanorods on its surface. The success of this synthesis largely relies on the level of control over oxygen introduction. By replacing zinc foils with zinc microspheres, unique and sophisticated urchin-like ZnO nanorod assemblies can be readily obtained.

13.
Phys Rev Lett ; 103(22): 226401, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-20366114

RESUMO

"Noncompensated n-p codoping" is established as an enabling concept for enhancing the visible-light photoactivity of TiO2 by narrowing its band gap. The concept embodies two crucial ingredients: the electrostatic attraction within the n-p dopant pair enhances both the thermodynamic and kinetic solubilities, and the noncompensated nature ensures the creation of tunable intermediate bands that effectively narrow the band gap. The concept is demonstrated using first-principles calculations, and is validated by direct measurements of band gap narrowing using scanning tunneling spectroscopy, dramatically redshifted optical absorbance, and enhanced photoactivity manifested by efficient electron-hole separation in the visible-light region. This concept is broadly applicable to the synthesis of other advanced functional materials that demand optimal dopant control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...