Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 23(6): 1066-1076, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25807289

RESUMO

Oncolytic viruses (OVs) have shown promising clinical activity when administered by direct intratumoral injection. However, natural barriers in the blood, including antibodies and complement, are likely to limit the ability to repeatedly administer OVs by the intravenous route. We demonstrate here that for a prototype of the clinical vaccinia virus based product Pexa-Vec, the neutralizing activity of antibodies elicited by smallpox vaccination, as well as the anamnestic response in hyperimmune virus treated cancer patients, is strictly dependent on the activation of complement. In immunized rats, complement depletion stabilized vaccinia virus in the blood and led to improved delivery to tumors. Complement depletion also enhanced tumor infection when virus was directly injected into tumors in immunized animals. The feasibility and safety of using a complement inhibitor, CP40, in combination with vaccinia virus was tested in cynomolgus macaques. CP40 pretreatment elicited an average 10-fold increase in infectious titer in the blood early after the infusion and prolonged the time during which infectious virus was detectable in the blood of animals with preexisting immunity. Capitalizing on the complement dependence of antivaccinia antibody with adjunct complement inhibitors may increase the infectious dose of oncolytic vaccinia virus delivered to tumors in virus in immune hosts.


Assuntos
Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/imunologia , Vaccinia virus/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Estudos de Viabilidade , Feminino , Células HeLa , Humanos , Injeções Intralesionais , Macaca fascicularis/imunologia , Masculino , Neoplasias/sangue , Neoplasias/terapia , Testes de Neutralização , Piridonas/imunologia , Piridonas/farmacologia , Ratos , Ratos Endogâmicos F344 , Vacina Antivariólica/sangue , Vacina Antivariólica/imunologia , Vacinação , Células Vero
2.
Clin Cancer Res ; 19(14): 3832-43, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23714728

RESUMO

PURPOSE: Acute lymphoblastic leukemia (ALL) remains incurable in most adults. It has been difficult to provide effective immunotherapy to improve outcomes for the majority of patients. Rhabdoviruses induce strong antiviral immune responses. We hypothesized that mice administered ex vivo rhabdovirus-infected ALL cells [immunotherapy by leukemia-oncotropic virus (iLOV)] would develop robust antileukemic immune responses capable of controlling ALL. EXPERIMENTAL DESIGN: Viral protein production, replication, and cytopathy were measured in human and murine ALL cells exposed to attenuated rhabdovirus. Survival following injection of graded amounts of ALL cells was compared between cohorts of mice administered γ-irradiated rhabdovirus-infected ALL cells (iLOV) or multiple control vaccines to determine key immunotherapeutic components and characteristics. Host immune requirements were assessed in immunodeficient and bone marrow-transplanted mice or by adoptive splenocyte transfer from immunized donors. Antileukemic immune memory was ascertained by second leukemic challenge in long-term survivors. RESULTS: Human and murine ALL cells were infected and killed by rhabdovirus; this produced a potent antileukemia vaccine. iLOV protected mice from otherwise lethal ALL by developing durable leukemia-specific immune-mediated responses (P < 0.0001), which required an intact CTL compartment. Preexisting antiviral immunity augmented iLOV potency. Splenocytes from iLOV-vaccinated donors protected 60% of naïve recipients from ALL challenge (P = 0.0001). Injecting leukemia cells activated by, or concurrent with, multiple Toll-like receptor agonists could not reproduce the protective effect of iLOV. Similarly, injecting uninfected irradiated viable, apoptotic, or necrotic leukemia cells with/without concurrent rhabdovirus administration was ineffective. CONCLUSION: Rhabdovirus-infected leukemia cells can be used to produce a vaccine that induces robust specific immunity against aggressive leukemia.


Assuntos
Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Rhabdoviridae/fisiologia , Transferência Adotiva , Animais , Transplante de Medula Óssea , Vacinas Anticâncer , Linhagem Celular Tumoral , Sobrevivência Celular , Chlorocebus aethiops , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Nus , Transplante de Neoplasias , Medicina de Precisão , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Células Vero
3.
Mol Ther ; 20(9): 1791-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22760544

RESUMO

Treatment of permissive tumors with the oncolytic virus (OV) VSV-Δ51 leads to a robust antitumor T-cell response, which contributes to efficacy; however, many tumors are not permissive to in vivo treatment with VSV-Δ51. In an attempt to channel the immune stimulatory properties of VSV-Δ51 and broaden the scope of tumors that can be treated by an OV, we have developed a potent oncolytic vaccine platform, consisting of tumor cells infected with VSV-Δ51. We demonstrate that prophylactic immunization with this infected cell vaccine (ICV) protected mice from subsequent tumor challenge, and expression of granulocyte-monocyte colony stimulating factor (GM-CSF) by the virus (VSVgm-ICV) increased efficacy. Immunization with VSVgm-ICV in the VSV-resistant B16-F10 model induced maturation of dendritic and natural killer (NK) cell populations. The challenge tumor is rapidly infiltrated by a large number of interferon γ (IFNγ)-producing T and NK cells. Finally, we demonstrate that this approach is robust enough to control the growth of established tumors. This strategy is broadly applicable because of VSV's extremely broad tropism, allowing nearly all cell types to be infected at high multiplicities of infection in vitro, where the virus replication kinetics outpace the cellular IFN response. It is also personalized to the unique tumor antigen(s) displayed by the cancer cell.


Assuntos
Vacinas Anticâncer/imunologia , Melanoma Experimental/prevenção & controle , Melanoma Experimental/terapia , Neoplasias Cutâneas/prevenção & controle , Neoplasias Cutâneas/terapia , Vesiculovirus/imunologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/administração & dosagem , Linhagem Celular Tumoral , Chlorocebus aethiops , Feminino , Terapia Genética/métodos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Imunização , Interferon gama/biossíntese , Interferon gama/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Vero , Vesiculovirus/genética , Replicação Viral
4.
Mol Ther ; 20(4): 749-58, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22186794

RESUMO

Oncolytic viruses are generally designed to be cancer selective on the basis of a single genetic mutation. JX-594 is a thymidine kinase (TK) gene-inactivated oncolytic vaccinia virus expressing granulocyte-macrophage colony-stimulating factor (GM-CSF) and lac-Z transgenes that is designed to destroy cancer cells through replication-dependent cell lysis and stimulation of antitumoral immunity. JX-594 has demonstrated a favorable safety profile and reproducible tumor necrosis in a variety of solid cancer types in clinical trials. However, the mechanism(s) responsible for its cancer-selectivity have not yet been well described. We analyzed the replication of JX-594 in three model systems: primary normal and cancer cells, surgical explants, and murine tumor models. JX-594 replication, transgene expression, and cytopathic effects were highly cancer-selective, and broad spectrum activity was demonstrated. JX-594 cancer-selectivity was multi-mechanistic; replication was activated by epidermal growth factor receptor (EGFR)/Ras pathway signaling, cellular TK levels, and cancer cell resistance to type-I interferons (IFNs). These findings confirm a large therapeutic index for JX-594 that is driven by common genetic abnormalities in human solid tumors. This appears to be the first description of multiple selectivity mechanisms, both inherent and engineered, for an oncolytic virus. These findings have implications for oncolytic viruses in general, and suggest that their cancer targeting is a complex and multifactorial process.


Assuntos
Neoplasias/metabolismo , Vírus Oncolíticos/fisiologia , Poxviridae/fisiologia , Transdução de Sinais/fisiologia , Replicação Viral/fisiologia , Animais , Western Blotting , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HeLa , Humanos , Técnicas In Vitro , Leucócitos Mononucleares , Camundongos , Camundongos Nus , Neoplasias/genética , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Poxviridae/genética , Transdução de Sinais/genética , Replicação Viral/genética
5.
Viral Immunol ; 23(1): 17-28, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20121399

RESUMO

Studies from our laboratory and those of others have implicated lipopolysaccharide (LPS)-induced MAPK signaling as an important pathway in the regulation of cytokine expression. In this article, the regulation of IL-12 expression in two different human myeloid cell populations was evaluated. In primary monocytes, the inhibition of p38 enhanced IL-12 production, whereas it downregulated IL-12 production in THP-1 cells. The role of MAPK signaling in transcription factor binding to the IL-12p40 promoter was subsequently determined. In primary monocytes, ERK and p38 inhibition increased binding of AP-1 and Sp1, respectively, to the IL-12p40 promoter, while JNK inhibition increased NF-kappaB, AP-1, and Sp1 binding. In THP-1 cells, p38, ERK, and JNK inhibition increased NF-kappaB and Sp1 binding to the IL-12p40 promoter, while inhibiting AP-1 binding. In monocytes, mutations in the NF-kappaB, AP-1, Sp1, or Ets-2 binding sites resulted in complete inhibition of LPS-stimulated IL-12p40 promoter activity using a luciferase-based assay. In contrast, promoter activity was abrogated in THP-1 cells only when the Sp1 or Ets-2 binding sites were mutated. Transcription factor binding to the IL-12p40 promoter following in-vitro HIV infection demonstrated several differences between monocytes and THP-1 cells. Infection with HIV produced an increase in NF-kappaB, AP-1, and Sp1 binding in primary monocytes. In contrast, binding of Ets-2 was dramatically impaired following HIV infection of monocytes, but was unaffected in THP-1 cells. These data clearly show that although LPS induces IL-12p40 expression in primary monocytes and THP-1 cells, the signaling pathways involved and the effect of HIV infection differ and can have disparate effects in these two cell types.


Assuntos
Infecções por HIV/imunologia , Subunidade p40 da Interleucina-12/biossíntese , Lipopolissacarídeos/imunologia , Sistema de Sinalização das MAP Quinases , Células Mieloides/imunologia , Transdução de Sinais , Linhagem Celular , Células Cultivadas , DNA/metabolismo , Humanos , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Proto-Oncogênica c-ets-2/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição AP-1/metabolismo
6.
Curr Opin Mol Ther ; 11(1): 13-21, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19169955

RESUMO

Striking a balance between subversion of antiviral immune responses and enhancement of potentially therapeutic, antitumor cytotoxic responses is a challenge at the forefront of oncolytic virus (OV) research. Some of the immune hurdles that must be overcome to maximize OV delivery to spread throughout tumor beds, and an outline of some of the strategies developed to deal with these obstacles are reviewed. In addition, current research that may lead to antitumor immunity during, or subsequent to, OV therapy is discussed. Finally speculations are made upon emerging areas of viral and immune research that could be merged to create new therapeutic paradigms.


Assuntos
Neoplasias/imunologia , Neoplasias/terapia , Humanos , Imunoterapia/métodos , Terapia Viral Oncolítica/métodos
7.
Mol Ther ; 15(9): 1686-93, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17579581

RESUMO

Oncolytic viruses (OVs) are selected or designed to eliminate malignancies by direct infection and lysis of cancer cells. In contrast to this concept of direct tumor lysis by viral infection, we observed that a significant portion of the in vivo tumor killing activity of two OVs, vesicular stomatitis virus (VSV) and vaccinia virus is caused by indirect killing of uninfected tumor cells. Shortly after administering the oncolytic virus we observed limited virus infection, coincident with a loss of blood flow to the interior of the tumor that correlated with induction of apoptosis in tumor cells. Transcript profiling of tumors showed that virus infection resulted in a dramatic transcriptional activation of pro-inflammatory genes including the neutrophil chemoattractants CXCL1 and CXCL5. Immunohistochemical examination of infected tumors revealed infiltration by neutrophils correlating with chemokine induction. Depletion of neutrophils in animals prior to VSV administration eliminated uninfected tumor cell apoptosis and permitted more extensive replication and spreading of the virus throughout the tumor. Taken all together, these results indicate that targeted recruitment of neutrophils to infected tumor beds enhances the killing of malignant cells. We propose that activation of inflammatory cells can be used for enhancing the effectiveness of oncolytic virus therapeutics, and that this approach should influence the planning of therapeutic doses.


Assuntos
Inflamação/terapia , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Animais , Apoptose/fisiologia , Velocidade do Fluxo Sanguíneo , Linhagem Celular Tumoral , Imunofluorescência , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , Inflamação/genética , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/genética , Neoplasias/patologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus da Estomatite Vesicular Indiana/fisiologia , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Mol Ther ; 15(1): 123-30, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17164783

RESUMO

Oncolytic viruses capable of tumor-selective replication and cytolysis have shown early promise as cancer therapeutics. However, the host immune system remains a significant obstacle to effective systemic administration of virus in a clinical setting. Here, we demonstrate the severe negative impact of the adaptive immune response on the systemic delivery of oncolytic vesicular stomatitis virus (VSV) in an immune-competent murine tumor model, an effect mediated primarily by the neutralization of injected virions by circulating antibodies. We show that this obstacle can be overcome by administering virus within carrier cells that conceal viral antigen during delivery. Infected cells were delivered to tumor beds and released virus to infect malignant cells while sparing normal tissues. Repeated administration of VSV in carrier cells to animals bearing metastatic tumors greatly improved therapeutic efficacy when compared with naked virion injection. Whole-body molecular imaging revealed that carrier cells derived from solid tumors accumulate primarily in the lungs following intravenous injection, whereas leukemic carriers disseminate extensively throughout the body. Furthermore, xenogeneic cells were equally effective at delivering virus as syngeneic cells. These findings emphasize the importance of establishing cell-based delivery platforms in order to maximize the efficacy of oncolytic therapeutics.


Assuntos
Vírus Oncolíticos/imunologia , Transgenes/genética , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular Tumoral , Feminino , Terapia Genética , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/virologia , Taxa de Sobrevida , Vesiculovirus/imunologia
9.
Nat Rev Cancer ; 5(12): 965-76, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16294217

RESUMO

In the past 5 years, the field of oncolytic virus research has matured significantly and is moving past the stage of being a laboratory novelty into a new era of preclinical and clinical trials. What have recent anticancer trials of oncolytic viruses taught us about this exciting new line of therapeutics?


Assuntos
Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/fisiologia , Animais , Ensaios Clínicos como Assunto , Variação Genética , Humanos , Desequilíbrio de Ligação , Neoplasias/virologia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...