Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 2(5): 472-83, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18462697

RESUMO

Regulating the choice between neural stem cell maintenance versus differentiation determines growth and size of the developing brain. Here we identify TGF-beta signaling as a crucial factor controlling these processes. At early developmental stages, TGF-beta signal activity is localized close to the ventricular surface of the neuroepithelium. In the midbrain, but not in the forebrain, Tgfbr2 ablation results in ectopic expression of Wnt1/beta-catenin and FGF8, activation of Wnt target genes, and increased proliferation and horizontal expansion of neuroepithelial cells due to shortened cell-cycle length and decreased cell-cycle exit. Consistent with this phenotype, self-renewal of mutant neuroepithelial stem cells is enhanced in the presence of FGF and requires Wnt signaling. Moreover, TGF-beta signal activation counteracts Wnt-induced proliferation of midbrain neuroepithelial cells. Thus, TGF-beta signaling controls the size of a specific brain area, the dorsal midbrain, by antagonizing canonical Wnt signaling and negatively regulating self-renewal of neuroepithelial stem cells.


Assuntos
Diferenciação Celular , Mesencéfalo/citologia , Mesencéfalo/fisiologia , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Proteína Wnt1/fisiologia , Animais , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/fisiologia , Humanos , Mesencéfalo/embriologia , Camundongos , Células Neuroepiteliais/citologia , Células Neuroepiteliais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Especificidade de Órgãos , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
2.
J Cell Biol ; 175(6): 1005-15, 2006 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-17158956

RESUMO

Given their accessibility, multipotent skin-derived cells might be useful for future cell replacement therapies. We describe the isolation of multipotent stem cell-like cells from the adult trunk skin of mice and humans that express the neural crest stem cell markers p75 and Sox10 and display extensive self-renewal capacity in sphere cultures. To determine the origin of these cells, we genetically mapped the fate of neural crest cells in face and trunk skin of mouse. In whisker follicles of the face, many mesenchymal structures are neural crest derived and appear to contain cells with sphere-forming potential. In the trunk skin, however, sphere-forming neural crest-derived cells are restricted to the glial and melanocyte lineages. Thus, self-renewing cells in the adult skin can be obtained from several neural crest derivatives, and these are of distinct nature in face and trunk skin. These findings are relevant for the design of therapeutic strategies because the potential of stem and progenitor cells in vivo likely depends on their nature and origin.


Assuntos
Linhagem da Célula , Células-Tronco Multipotentes/citologia , Crista Neural/citologia , Pele/citologia , Adipócitos/citologia , Adipócitos/metabolismo , Adulto , Animais , Diferenciação Celular , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Face , Feminino , Imunofluorescência , Folículo Piloso/citologia , Folículo Piloso/fisiologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Masculino , Melanócitos/citologia , Melanócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Células-Tronco Multipotentes/fisiologia , Crista Neural/fisiologia , Neuroglia/citologia , Neuroglia/fisiologia , Fatores de Transcrição SOXE , Fatores de Transcrição/metabolismo
3.
J Cell Biol ; 159(5): 867-80, 2002 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-12473692

RESUMO

Beta-catenin plays a pivotal role in cadherin-mediated cell adhesion. Moreover, it is a downstream signaling component of Wnt that controls multiple developmental processes such as cell proliferation, apoptosis, and fate decisions. To study the role of beta-catenin in neural crest development, we used the Cre/loxP system to ablate beta-catenin specifically in neural crest stem cells. Although several neural crest-derived structures develop normally, mutant animals lack melanocytes and dorsal root ganglia (DRG). In vivo and in vitro analyses revealed that mutant neural crest cells emigrate but fail to generate an early wave of sensory neurogenesis that is normally marked by the transcription factor neurogenin (ngn) 2. This indicates a role of beta-catenin in premigratory or early migratory neural crest and points to heterogeneity of neural crest cells at the earliest stages of crest development. In addition, migratory neural crest cells lateral to the neural tube do not aggregate to form DRG and are unable to produce a later wave of sensory neurogenesis usually marked by the transcription factor ngn1. We propose that the requirement of beta-catenin for the specification of melanocytes and sensory neuronal lineages reflects roles of beta-catenin both in Wnt signaling and in mediating cell-cell interactions.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Crista Neural/embriologia , Transativadores/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Biomarcadores/análise , Comunicação Celular , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Cruzamentos Genéticos , Proteínas do Citoesqueleto/genética , Gânglios Espinais/citologia , Gânglios Espinais/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Sequências Hélice-Alça-Hélice , Melanócitos/citologia , Camundongos , Camundongos Mutantes , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/citologia , Crista Neural/fisiologia , Neuroglia/citologia , Neurônios/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recombinação Genética , Células-Tronco/citologia , Células-Tronco/fisiologia , Transativadores/genética , beta Catenina
4.
Hum Mol Genet ; 11(24): 3075-85, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12417529

RESUMO

Hirschsprung disease, or congenital megacolon, is characterized by aganglionosis of the terminal bowel, which leads to intestinal obstruction and chronic constipation. Several genes involved in the disease have been identified. In particular, haploinsufficiency of SOX10, which encodes a transcription factor, results in megacolon, often in combination with other disorders. Although Hirschsprung disease has been recognized as a neurocristopathy, the cellular mechanisms that lead to aganglionosis in affected individuals are unclear. Failure of mutant enteric progenitor cells to migrate into the gut, to survive, or to differentiate into appropriate cell types at the appropriate time and in correct numbers might contribute to the disease phenotype. In the present study, we use mice with a targeted deletion of Sox10 to study the etiology of Hirschsprung disease. We demonstrate that neural crest-derived enteric progenitors that are heterozygous for the Sox10 mutation colonize the proximal intestine and are unaffected in their survival capacity. However, unlike their wild-type counterparts, mutant enteric neural crest-derived cells are unable to maintain their progenitor state and acquire preneuronal traits, which results in a reduction of the progenitor pool size. Thus, the cells that normally colonize the hindgut are depleted in the Sox10 mutant, causing the distal bowel to become aganglionic.


Assuntos
Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Proteínas de Grupo de Alta Mobilidade/genética , Doença de Hirschsprung/genética , Células-Tronco/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Gânglios/metabolismo , Gânglios/patologia , Heterozigoto , Proteínas de Grupo de Alta Mobilidade/metabolismo , Doença de Hirschsprung/patologia , Camundongos , Mutação , Fatores de Transcrição SOXE , Células-Tronco/patologia , Fatores de Transcrição
5.
Dev Biol ; 250(1): 168-80, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12297104

RESUMO

The transcription factor Erm is a member of the Pea3 subfamily of Ets domain proteins that is expressed in multipotent neural crest cells, peripheral neurons, and satellite glia. A specific role of Erm during development has not yet been established. We addressed the function of Erm in neural crest development by forced expression of a dominant-negative form of Erm. Functional inhibition of Erm in neural crest cells interfered with neuronal fate decision, while progenitor survival and proliferation were not affected. In contrast, blocking Erm function in neural crest stem cells did not influence their ability to adopt a glial fate, independent of the glia-inducing signal. Furthermore, glial survival and differentiation were normal. However, the proliferation rate was drastically diminished in glial cells, suggesting a glia-specific role of Erm in controlling cell cycle progression. Thus, in contrast to other members of the Pea3 subfamily that are involved in late steps of neurogenesis, Erm appears to be required in early neural crest development. Moreover, our data point to multiple, lineage-specific roles of Erm in neural crest stem cells and their derivatives, suggesting that Erm function is dependent on the cell intrinsic and extrinsic context.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Crista Neural/citologia , Células-Tronco/citologia , Fatores de Transcrição/fisiologia , Animais , Diferenciação Celular , Divisão Celular , Linhagem Celular , Linhagem da Célula , Células Cultivadas , Proteínas de Ligação a DNA/genética , Feminino , Expressão Gênica , Humanos , Masculino , Mutagênese , Neuroglia/citologia , Estrutura Terciária de Proteína , Ratos , Fatores de Transcrição/genética
6.
Int J Dev Biol ; 46(1): 193-200, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11902683

RESUMO

Multipotent stem cells must generate various differentiated cell types in correct number and sequence during neural development. In the peripheral nervous system (PNS), this involves the formation of postmigratory progenitor cell types which maintain multipotency and are able to give rise to neural and non-neural cells in response to instructive growth factors. We propose that fate restrictions in such progenitor cells are controlled by the combinatorial interaction of different extracellular signals, including community effects in response to both neurogenic and gliogenic factors. In addition, distinct progenitor cell types display intrinsic differences which modulate their response to the extracellular environment. Thus, a progenitor cell is apparently able to integrate multiple intrinsic and extrinsic cues and thereby to choose fates appropriate for its location. Fate analysis of genetically modified progenitor cells will help to identify the molecules involved. This approach appears promising given the identification of multipotent progenitor cells from the mouse PNS and the availability of genetics in the mouse system.


Assuntos
Linhagem da Célula , Crista Neural/embriologia , Neurônios/citologia , Células-Tronco , Animais , Bromodesoxiuridina/farmacologia , Diferenciação Celular , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Modelos Biológicos , Sistema Nervoso Periférico/embriologia , Ratos , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...