Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732141

RESUMO

Familial Alzheimer's disease (FAD) is a complex and multifactorial neurodegenerative disorder for which no curative therapies are yet available. Indeed, no single medication or intervention has proven fully effective thus far. Therefore, the combination of multitarget agents has been appealing as a potential therapeutic approach against FAD. Here, we investigated the potential of combining tramiprosate (TM), curcumin (CU), and the JNK inhibitor SP600125 (SP) as a treatment for FAD. The study analyzed the individual and combined effects of these two natural agents and this pharmacological inhibitor on the accumulation of intracellular amyloid beta iAß; hyperphosphorylated protein TAU at Ser202/Thr205; mitochondrial membrane potential (ΔΨm); generation of reactive oxygen species (ROS); oxidized protein DJ-1; proapoptosis proteins p-c-JUN at Ser63/Ser73, TP53, and cleaved caspase 3 (CC3); and deficiency in acetylcholine (ACh)-induced transient Ca2+ influx response in cholinergic-like neurons (ChLNs) bearing the mutation I416T in presenilin 1 (PSEN1 I416T). We found that single doses of TM (50 µM), CU (10 µM), or SP (1 µM) were efficient at reducing some, but not all, pathological markers in PSEN 1 I416T ChLNs, whereas a combination of TM, CU, and SP at a high (50, 10, 1 µM) concentration was efficient in diminishing the iAß, p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 markers by -50%, -75%, -86%, and -100%, respectively, in PSEN1 I417T ChLNs. Although combinations at middle (10, 2, 0.2) and low (5, 1, 0.1) concentrations significantly diminished p-TAU Ser202/Thr205, DJ-1Cys106-SO3, and CC3 by -69% and -38%, -100% and -62%, -100% and -62%, respectively, these combinations did not alter the iAß compared to untreated mutant ChLNs. Moreover, a combination of reagents at H concentration was able to restore the dysfunctional ACh-induced Ca2+ influx response in PSEN 1 I416T. Our data suggest that the use of multitarget agents in combination with anti-amyloid (TM, CU), antioxidant (e.g., CU), and antiapoptotic (TM, CU, SP) actions might be beneficial for reducing iAß-induced ChLN damage in FAD.


Assuntos
Doença de Alzheimer , Antracenos , Curcumina , Presenilina-1 , Taurina/análogos & derivados , Curcumina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Presenilina-1/genética , Presenilina-1/metabolismo , Antracenos/farmacologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Peptídeos beta-Amiloides/metabolismo , Humanos , Proteínas tau/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos
2.
J Alzheimers Dis ; 99(2): 639-656, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728184

RESUMO

Background: Familial Alzheimer's disease (FAD) presenilin 1 E280A (PSEN 1 E280A) is characterized by functional impairment and the death of cholinergic neurons as a consequence of amyloid-ß (Aß) accumulation and abnormal phosphorylation of the tau protein. Currently, there are no available therapies that can cure FAD. Therefore, new therapies are urgently needed for treating this disease. Objective: To assess the effect of sildenafil (SIL) on cholinergic-like neurons (ChLNs) harboring the PSEN 1 E280A mutation. Methods: Wild-type (WT) and PSEN 1 E280A ChLNs were cultured in the presence of SIL (25µM) for 24 h. Afterward, proteinopathy, cell signaling, and apoptosis markers were evaluated via flow cytometry and fluorescence microscopy. Results: We found that SIL was innocuous toward WT PSEN 1 ChLNs but reduced the accumulation of intracellular Aß fragments by 87%, decreased the non-physiological phosphorylation of the protein tau at residue Ser202/Thr205 by 35%, reduced the phosphorylation of the proapoptotic transcription factor c-JUN at residue Ser63/Ser73 by 63%, decreased oxidized DJ-1 at Cys106-SO3 by 32%, and downregulated transcription factor TP53 (tumor protein p53), BH-3-only protein PUMA (p53 upregulated modulator of apoptosis), and cleaved caspase 3 (CC3) expression by 20%, 32%, and 22%, respectively, compared with untreated mutant ChLNs. Interestingly, SIL also ameliorated the dysregulation of acetylcholine-induced calcium ion (Ca2+) influx in PSEN 1 E280A ChLNs. Conclusions: Although SIL showed no antioxidant capacity in the oxygen radical absorbance capacity and ferric ion reducing antioxidant power assays, it might function as an anti-amyloid and antiapoptotic agent and functional neuronal enhancer in PSEN 1 E280A ChLNs. Therefore, the SIL has therapeutic potential for treating FAD.


Assuntos
Doença de Alzheimer , Neurônios Colinérgicos , Mutação , Presenilina-1 , Citrato de Sildenafila , Presenilina-1/genética , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Mutação/genética , Animais , Citrato de Sildenafila/farmacologia , Peptídeos beta-Amiloides/metabolismo , Humanos , Células Cultivadas , Camundongos , Proteínas tau/metabolismo , Proteínas tau/genética , Fosforilação/efeitos dos fármacos , Fenótipo
3.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200219, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547430

RESUMO

BACKGROUND AND OBJECTIVES: People with multiple sclerosis (MS) have a dysregulated circulating metabolome, but the metabolome of MS brain lesions has not been studied. The aims of this study were to identify differences in the brain tissue metabolome in MS compared with controls and to assess its association with the cellular profile of corresponding tissue. METHODS: MS tissues included samples from the edge and core of chronic active or inactive lesions and periplaque white matter (WM). Control specimens were obtained from normal WM. Metabolomic analysis was performed using mass-spectrometry coupled with liquid/gas chromatography and subsequently integrated with single-nucleus RNA-sequencing data by correlating metabolite abundances with relative cell counts, as well as individual genes using Multiomics Factor Analysis (MOFA). RESULTS: Seventeen samples from 5 people with secondary progressive MS and 8 samples from 6 controls underwent metabolomic profiling identifying 783 metabolites. MS lesions had higher levels of sphingosines (false discovery rate-adjusted p-value[q] = 2.88E-05) and sphingomyelins and ceramides (q = 2.15E-07), but lower nucleotide (q = 0.05), energy (q = 0.001), lysophospholipid (q = 1.86E-07), and monoacylglycerol (q = 0.04) metabolite levels compared with control WM. Periplaque WM had elevated sphingomyelins and ceramides (q = 0.05) and decreased energy metabolites (q = 0.01) and lysophospholipids (q = 0.05) compared with control WM. Sphingolipids and membrane lipid metabolites were positively correlated with astrocyte and immune cell abundances and negatively correlated with oligodendrocytes. On the other hand, long-chain fatty acid, endocannabinoid, and monoacylglycerol pathways were negatively correlated with astrocyte and immune cell populations and positively correlated with oligodendrocytes. MOFA demonstrated associations between differentially expressed metabolites and genes involved in myelination and lipid biosynthesis. DISCUSSION: MS lesions and perilesional WM demonstrated a significantly altered metabolome compared with control WM. Many of the altered metabolites were associated with altered cellular composition and gene expression, indicating an important role of lipid metabolism in chronic neuroinflammation in MS.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Esfingomielinas , Monoglicerídeos , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos , Ceramidas
4.
Continuum (Minneap Minn) ; 30(1): 14-52, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38330471

RESUMO

OBJECTIVE: This article describes an integrative strategy to evaluate patients with suspected myelopathy, provides advice on diagnostic approach, and outlines the framework for the etiologic diagnosis of myelopathies. LATEST DEVELOPMENTS: Advances in diagnostic neuroimaging techniques of the spinal cord and improved understanding of the immune pathogenic mechanisms associated with spinal cord disorders have expanded the knowledge of inflammatory and noninflammatory myelopathies. The discovery of biomarkers of disease, such as anti-aquaporin 4 and anti-myelin oligodendrocyte glycoprotein antibodies involved in myelitis and other immune-related mechanisms, the emergence and identification of infectious disorders that target the spinal cord, and better recognition of myelopathies associated with vascular pathologies have expanded our knowledge about the broad clinical spectrum of myelopathies. ESSENTIAL POINTS: Myelopathies include a group of inflammatory and noninflammatory disorders of the spinal cord that exhibit a wide variety of motor, sensory, gait, and sensory disturbances and produce major neurologic disability. Both inflammatory and noninflammatory myelopathies comprise a broad spectrum of pathophysiologic mechanisms and etiologic factors that lead to specific clinical features and presentations. Knowledge of the clinical variety of myelopathies and understanding of strategies for the precise diagnosis, identification of etiologic factors, and implementation of therapies can help improve outcomes.


Assuntos
Mielite , Doenças da Medula Espinal , Humanos , Doenças da Medula Espinal/diagnóstico por imagem , Doenças da Medula Espinal/terapia , Medula Espinal/irrigação sanguínea , Mielite/diagnóstico , Neuroimagem , Aquaporina 4
5.
Artigo em Inglês | MEDLINE | ID: mdl-38108603

RESUMO

A 14-year-old girl was scheduled for pulmonary valve replacement. A computed tomography scan showed an enlarged cardiac silhouette with an aneurysmal pulmonary artery. A less-invasive approach through the left axilla with peripheral cannulation was selected. The patient was draped in the decubitus position, with a roll under the left shoulder and the left arm over the head. The anatomical landmarks were the left nipple and the tip of the scapula. A 5-cm vertical incision in the mid-axillary line was performed, and the thorax was entered through the fourth intercostal space. Peripheral cannulation for cardiopulmonary bypass was achieved by a right groin dissection. Partial bypass was instituted and, on an unloaded heart, the ascending aorta plus the right appendage and the pulmonary artery were further cannulated. With the heart beating, the pulmonary artery was opened, and a 25-mm biological Carpentier Perimount-Magna valve was chosen. A second stitch was used to close the arteriotomy with large bites in a double row to reduce the perimeter of the trunk. Cardiopulmonary bypass was discontinued (after 64 minutes), and the cannulas were removed sequentially. Echocardiography showed a good result, with proper valve function and a reduced pulmonary artery. The patient was discharged on postoperative day 12 on antiplatelet therapy.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Valva Pulmonar , Feminino , Humanos , Adolescente , Axila/cirurgia , Valva Pulmonar/cirurgia , Reimplante , Aorta
6.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958728

RESUMO

Several efforts to develop new protocols to differentiate in in vitro human mesenchymal stromal cells (hMSCs) into dopamine (DA) neurons have been reported. We have formulated NeuroForsk 2.0 medium containing fibroblast growth factor type beta (FGFb), brain-derived neurotrophic factor (BDNF), melatonin, purmorphamine, and forskolin. We report for the first time that menstrual stromal cells (MenSCs) cultured in NeuroForsk 2.0 medium for 7 days transdifferentiated into DA-like neurons (DALNs) expressing specific DA lineage markers tyrosine hydroxylase-positive cells (TH+) and DA transporter-positive (DAT+) cells and were responsive to DA-induced transient Ca2+ influx. To test the usefulness of this medium, DALNs were exposed to rotenone (ROT), a naturally occurring organic neurotoxin used extensively to chemically induce an in vitro model of Parkinson's disease (PD), which is a movement disorder characterized by the specific loss of DA neurons. We wanted to determine whether ROT induces apoptotic cell death and autophagy pathway under acute or chronic conditions in DALNs. Here, we report that acute ROT exposure induced several molecular changes in DALNS. ROT induced a loss of mitochondrial membrane potential (ΔΨm), high expression of parkin (PRKN), and high colocalization of dynamin-related protein 1 (DRP1) with the mitochondrial translocase of the outer membrane of mitochondria 20 (TOMM20) protein. Acute ROT also induced the appearance of DJ-1Cys106-SO3, as evidenced by the generation of H2O2 and oxidative stress (OS) damage. Remarkably, ROT triggered the phosphorylation of leucine-rich repeat kinase 2 (LRRK2) at residue Ser935 and phosphorylation of α-Syn at residue Ser129, a pathological indicator. ROT induced the accumulation of lipidated microtubule-associated protein 1B-light chain 3 (LC3B), a highly specific marker of autophagosomes. Finally, ROT induced cleaved caspase 3 (CC3), a marker of activated caspase 3 (CASP3) in apoptotic DALNs compared to untreated DANLs. However, the chronic condition was better at inducing the accumulation of lysosomes than the acute condition. Importantly, the inhibitor of the LRRK2 kinase PF-06447475 (PF-475) almost completely blunted ROT-induced apoptosis and reduced ROT-induced accumulation of lysosomes in both acute and chronic conditions in DALNs. Our data suggest that LRRK2 kinase regulated both apoptotic cell death and autophagy in DALNs under OS. Given that defects in mitochondrial complex I activity are commonly observed in PD, ROT works well as a chemical model of PD in both acute and chronic conditions. Therefore, prevention and treatment therapy should be guided to relieve DALNs from mitochondrial damage and OS, two of the most important triggers in the apoptotic cell death of DALNs.


Assuntos
Doença de Parkinson , Rotenona , Humanos , Rotenona/farmacologia , Rotenona/metabolismo , Dopamina/metabolismo , Caspase 3/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Apoptose , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos/metabolismo , Autofagia , Doença Crônica
7.
J Neurol Sci ; 455: 120858, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37948972

RESUMO

BACKGROUND: Pre-existing neurological diseases have been identified as risk factors for severe COVID-19 infection and death. There is a lack of comprehensive literature review assessing the relationship between pre-existing neurological conditions and COVID-19 outcomes. Identification of high risk groups is critical for optimal treatment and care. METHODS: A literature review was conducted for systematic reviews, meta-analyses, and scoping reviews published between January 1, 2020 and January 1, 2023. Literature assessing individuals with pre-existing neurological diseases and COVID-19 infection was included. Information regarding infection severity was extracted, and potential limitations were identified. RESULTS: Thirty-nine articles met inclusion criteria, with data assessing >3 million patients from 51 countries. 26/51 (50.9%) of countries analyzed were classified as high income, while the remaining represented middle-low income countries (25/51; 49.0%). A majority of evidence focused on the impact of cerebrovascular disease (17/39; 43.5%) and dementia (5/39; 12.8%) on COVID-19 severity and mortality. 92.3% of the articles (36/39) suggested a significant association between neurological conditions and increased risk of severe COVID-19 and mortality. Cerebrovascular disease, dementia, Parkinson's disease, and epilepsy were associated with increased COVID severity and mortality. CONCLUSION: Pre-existing neurological diseases including cerebrovascular disease, Alzheimer's disease and other dementias, epilepsy, and Parkinson's disease are significant risk factors for severity of COVID-19 infection and mortality in the acute infectious period. Given that 61.5% (24/39) of the current evidence only includes data from 2020, further updated literature is crucial to identify the relationship between chronic neurological conditions and clinical characteristics of COVID-19 variants.


Assuntos
COVID-19 , Transtornos Cerebrovasculares , Coinfecção , Demência , Epilepsia , Doença de Parkinson , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Revisões Sistemáticas como Assunto , Epilepsia/complicações , Epilepsia/epidemiologia
8.
Front Mol Biosci ; 10: 1173039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936721

RESUMO

Introduction: This study aims to test the hypothesis that increased ketone body production resulting from a ketogenic diet (KD) will correlate with reductions in pro-inflammatory cytokines and lipid subspecies and improved clinical outcomes in adults treated with an adjunctive ketogenic diet for super-refractory status epilepticus (SRSE). Methods: Adults (18 years or older) were treated with a 4:1 (fat: carbohydrate and protein) ratio of enteral KD as adjunctive therapy to pharmacologic seizure suppression in SRSE. Blood and urine samples and clinical measurements were collected at baseline (n = 10), after 1 week (n = 8), and after 2 weeks of KD (n = 5). In addition, urine acetoacetate, serum ß-hydroxybutyrate, lipidomics, pro-inflammatory cytokines (IL-1ß and IL-6), chemokines (CCL3, CCL4, and CXCL13), and clinical measurements were obtained at these three time points. Univariate and multivariate data analyses were performed to determine the correlation between ketone body production and circulating lipids, inflammatory biomarkers, and clinical outcomes. Results: Changes in lipids included an increase in ceramides, mono-hexosylceramide, sphingomyelin, phosphocholine, and phosphoserines, and there was a significant reduction in pro-inflammatory mediators, IL-6 and CXCL13, seen at 1 and 2 weeks of KD. Higher blood ß-hydroxybutyrate levels at baseline correlated with better clinical outcomes; however, ketone body production did not correlate with other variables during treatment. Higher chemokine CCL3 levels following treatment correlated with a longer stay in the intensive care unit and a higher modified Rankin Scale score (worse neurologic disability) at discharge and 6-month follow up. Discussion: Adults receiving an adjunctive enteral ketogenic diet for super-refractory status epilepticus exhibit alterations in select pro-inflammatory cytokines and lipid species that may predict their response to treatment.

9.
Pediatr Neurol ; 149: 56-62, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37797356

RESUMO

BACKGROUND: Acute flaccid myelitis (AFM) presents with acute onset of flaccid paralysis with involvement of the gray matter on magnetic resonance imaging (MRI) of the spinal cord. Studies have reported brain MRI abnormalities, but the characteristics have not been fully defined. In this multicenter study, we assessed the acute features and evolution of brain MRI abnormalities in AFM. METHODS: We reviewed brain MRIs of patients with AFM who presented to four referral hospitals between 2012 and 2018. Cases met established criteria for AFM. We analyzed the initial and follow-up brain MRIs. Areas were divided into supratentorial, infratentorial, and subdivisions within those regions. RESULTS: A total of 66 patients were included. Brain MRI abnormalities were present in 34 (52%). Infratentorial abnormalities were more common, occurring in 33 (97%) cases with the dorsal pons being the most frequently affected area (88%). Abnormalities were also present in the medulla (74%), cerebellum (41%), and midbrain (38%). Nine subjects (26%) exhibited both supratentorial and infratentorial abnormalities, whereas isolated supratentorial changes were present in only one (3%). Contrast-enhancing abnormalities were encountered in 9% of cases and meningeal involvement in 6%. On follow-up, most abnormalities, 20 of 24 (83%), were stable, improving, or had resolved. CONCLUSIONS: Brain MRI abnormalities occur in about half of the cases of AFM and commonly resolve with time. Dorsal pontine involvement is a characteristic MRI feature, whereas isolated supratentorial abnormalities are rare. Clinicians should consider that brain imaging abnormalities do not exclude a diagnosis of AFM in patients with typical presentations.


Assuntos
Encefalopatias , Malformações do Sistema Nervoso , Doenças Neuromusculares , Humanos , Imageamento por Ressonância Magnética , Doenças Neuromusculares/diagnóstico por imagem , Cerebelo , Estudos Multicêntricos como Assunto
10.
Cell Rep Med ; 4(8): 101148, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37552989

RESUMO

It is often challenging to distinguish cancerous from non-cancerous lesions in the brain using conventional diagnostic approaches. We introduce an analytic technique called Real-CSF (repetitive element aneuploidy sequencing in CSF) to detect cancers of the central nervous system from evaluation of DNA in the cerebrospinal fluid (CSF). Short interspersed nuclear elements (SINEs) are PCR amplified with a single primer pair, and the PCR products are evaluated by next-generation sequencing. Real-CSF assesses genome-wide copy-number alterations as well as focal amplifications of selected oncogenes. Real-CSF was applied to 280 CSF samples and correctly identified 67% of 184 cancerous and 96% of 96 non-cancerous brain lesions. CSF analysis was considerably more sensitive than standard-of-care cytology and plasma cell-free DNA analysis in the same patients. Real-CSF therefore has the capacity to be used in combination with other clinical, radiologic, and laboratory-based data to inform the diagnosis and management of patients with suspected cancers of the brain.


Assuntos
Neoplasias do Sistema Nervoso Central , Humanos , Reação em Cadeia da Polimerase/métodos , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/líquido cefalorraquidiano , Técnicas de Amplificação de Ácido Nucleico , Elementos Nucleotídeos Curtos e Dispersos , Sistema Nervoso Central
11.
Sci Rep ; 13(1): 12833, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553376

RESUMO

Familial Alzheimer's disease (FAD) is a complex neurodegenerative disorder for which there are no therapeutics to date. Several mutations in presenilin 1 (PSEN 1), which is the catalytic component of γ-secretase complex, are causal of FAD. Recently, the p.Ile416Thr (I416T) PSEN 1 mutation has been reported in large kindred in Colombia. However, cell and molecular information from I416T mutation is scarce. Here, we demonstrate that menstrual stromal cells (MenSCs)-derived planar (2D) PSEN 1 I416T cholinergic-like cells (ChLNS) and (3D) cerebral spheroids (CSs) reproduce the typical neuropathological markers of FAD in 4 post-transdifferentiating or 11 days of transdifferentiating, respectively. The models produce intracellular aggregation of APPß fragments (at day 4 and 11) and phosphorylated protein TAU at residue Ser202/Thr205 (at day 11) suggesting that iAPPß fragments precede p-TAU. Mutant ChLNs and CSs displayed DJ-1 Cys106-SO3 (sulfonic acid), failure of mitochondria membrane potential (ΔΨm), and activation of transcription factor c-JUN and p53, expression of pro-apoptotic protein PUMA, and activation of executer protein caspase 3 (CASP3), all markers of cell death by apoptosis. Moreover, we found that both mutant ChLNs and CSs produced high amounts of extracellular eAß42. The I416T ChLNs and CSs were irresponsive to acetylcholine induced Ca2+ influx compared to WT. The I416T PSEN 1 mutation might work as dominant-negative PSEN1 mutation. These findings might help to understanding the recurring failures of clinical trials of anti-eAß42, and support the view that FAD is triggered by the accumulation of other intracellular AßPP metabolites, rather than eAß42.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Neurônios/metabolismo , Colinérgicos , Mutação
12.
Int J Mol Sci ; 24(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37445652

RESUMO

Leucine-rich repeat kinase 2 (LRRK2) has been linked to dopaminergic neuronal vulnerability to oxidative stress (OS), mitochondrial impairment, and increased cell death in idiopathic and familial Parkinson's disease (PD). However, how exactly this kinase participates in the OS-mitochondria-apoptosis connection is still unknown. We used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 LRRK2 knockout (KO) in the human embryonic kidney cell line 293 (HEK-293) to evaluate the cellular response to the mitochondrial inhibitor complex I rotenone (ROT), a well-known OS and cell death inducer. We report successful knockout of the LRRK2 gene in HEK-293 cells using CRISPR editing (ICE, approximately 60%) and flow cytometry (81%) analyses. We found that HEK-293 LRRK2 WT cells exposed to rotenone (ROT, 50 µM) resulted in a significant increase in intracellular reactive oxygen species (ROS, +7400%); oxidized DJ-1-Cys106-SO3 (+52%); phosphorylation of LRRK2 (+70%) and c-JUN (+171%); enhanced expression of tumor protein (TP53, +2000%), p53 upregulated modulator of apoptosis (PUMA, +1950%), and Parkin (PRKN, +22%); activation of caspase 3 (CASP3, +8000%), DNA fragmentation (+35%) and decreased mitochondrial membrane potential (ΔΨm, -58%) and PTEN induced putative kinase 1 (PINK1, -49%) when compared to untreated cells. The translocation of the cytoplasmic fission protein dynamin-related Protein 1 (DRP1) to mitochondria was also observed by colocalization with translocase of the outer membrane 20 (TOM20). Outstandingly, HEK-293 LRRK2 KO cells treated with ROT showed unaltered OS and apoptosis markers. We conclude that loss of LRRK2 causes HEK-293 to be resistant to ROT-induced OS, mitochondrial damage, and apoptosis in vitro. Our data support the hypothesis that LRRK2 acts as a proapoptotic kinase by regulating mitochondrial proteins (e.g., PRKN, PINK1, DRP1, and PUMA), transcription factors (e.g., c-JUN and TP53), and CASP3 in cells under stress conditions. Taken together, these observations suggest that LRRK2 is an important kinase in the pathogenesis of PD.


Assuntos
Proteínas Reguladoras de Apoptose , Rotenona , Humanos , Rotenona/toxicidade , Caspase 3/metabolismo , Células HEK293 , Proteínas Reguladoras de Apoptose/metabolismo , Estresse Oxidativo , Apoptose/genética , Proteínas Quinases/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo
13.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37445771

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder caused by the progressive loss of dopaminergic (DAergic) neurons in the substantia nigra and the intraneuronal presence of Lewy bodies (LBs), composed of aggregates of phosphorylated alpha-synuclein at residue Ser129 (p-Ser129α-Syn). Unfortunately, no curative treatment is available yet. To aggravate matters further, the etiopathogenesis of the disorder is still unresolved. However, the neurotoxin rotenone (ROT) has been implicated in PD. Therefore, it has been widely used to understand the molecular mechanism of neuronal cell death. In the present investigation, we show that ROT induces two convergent pathways in HEK-293 cells. First, ROT generates H2O2, which, in turn, either oxidizes the stress sensor protein DJ-Cys106-SH into DJ-1Cys106SO3 or induces the phosphorylation of the protein LRRK2 kinase at residue Ser395 (p-Ser395 LRRK2). Once active, the kinase phosphorylates α-Syn (at Ser129), induces the loss of mitochondrial membrane potential (ΔΨm), and triggers the production of cleaved caspase 3 (CC3), resulting in signs of apoptotic cell death. ROT also reduces glucocerebrosidase (GCase) activity concomitant with the accumulation of lysosomes and autophagolysosomes reflected by the increase in LC3-II (microtubule-associated protein 1A/1B-light chain 3-phosphatidylethanolamine conjugate II) markers in HEK-293 cells. Second, the exposure of HEK-293 LRRK2 knockout (KO) cells to ROT displays an almost-normal phenotype. Indeed, KO cells showed neither H2O2, DJ-1Cys106SO3, p-Ser395 LRRK2, p-Ser129α-Syn, nor CC3 but displayed high ΔΨm, reduced GCase activity, and the accumulation of lysosomes and autophagolysosomes. Similar observations are obtained when HEK-293 LRRK2 wild-type (WT) cells are exposed to the inhibitor GCase conduritol-ß-epoxide (CBE). Taken together, these observations imply that the combined development of LRRK2 inhibitors and compounds for recovering GCase activity might be promising therapeutic agents for PD.


Assuntos
Glucosilceramidase , Doença de Parkinson , Humanos , Glucosilceramidase/genética , Rotenona/farmacologia , Rotenona/metabolismo , Células HEK293 , Peróxido de Hidrogênio/metabolismo , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Lisossomos/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo
14.
Mov Disord ; 38(9): 1625-1635, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37469269

RESUMO

BACKGROUND: Sex differences in Parkinson's disease (PD) risk are well-known. However, the role of sex chromosomes in the development and progression of PD is still unclear. OBJECTIVE: The objective of this study was to perform the first X-chromosome-wide association study for PD risk in a Latin American cohort. METHODS: We used data from three admixed cohorts: (1) Latin American Research consortium on the Genetics of Parkinson's Disease (n = 1504) as discover cohort, and (2) Latino cohort from International Parkinson Disease Genomics Consortium (n = 155) and (3) Bambui Aging cohort (n = 1442) as replication cohorts. We also developed an X-chromosome framework specifically designed for admixed populations. RESULTS: We identified eight linkage disequilibrium regions associated with PD. We replicated one of these regions (top variant rs525496; discovery odds ratio [95% confidence interval]: 0.60 [0.478-0.77], P = 3.13 × 10-5 replication odds ratio: 0.60 [0.37-0.98], P = 0.04). rs5525496 is associated with multiple expression quantitative trait loci in brain and non-brain tissues, including RAB9B, H2BFM, TSMB15B, and GLRA4, but colocalization analysis suggests that rs5525496 may not mediate risk by expression of these genes. We also replicated a previous X-chromosome-wide association study finding (rs28602900), showing that this variant is associated with PD in non-European populations. CONCLUSIONS: Our results reinforce the importance of including X-chromosome and diverse populations in genetic studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Cromossomos Humanos X , Doença de Parkinson , Feminino , Humanos , Masculino , Estudo de Associação Genômica Ampla , Hispânico ou Latino , América Latina , Doença de Parkinson/genética , Fatores Sexuais , Cromossomos Humanos X/genética , Desequilíbrio de Ligação/genética
15.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240306

RESUMO

Alzheimer's disease (AD) is a chronic neurological condition characterized by the severe loss of cholinergic neurons. Currently, the incomplete understanding of the loss of neurons has prevented curative treatments for familial AD (FAD). Therefore, modeling FAD in vitro is essential for studying cholinergic vulnerability. Moreover, to expedite the discovery of disease-modifying therapies that delay the onset and slow the progression of AD, we depend on trustworthy disease models. Although highly informative, induced pluripotent stem cell (iPSCs)-derived cholinergic neurons (ChNs) are time-consuming, not cost-effective, and labor-intensive. Other sources for AD modeling are urgently needed. Wild-type and presenilin (PSEN)1 p.E280A fibroblast-derived iPSCs, menstrual blood-derived menstrual stromal cells (MenSCs), and umbilical cord-derived Wharton Jelly's mesenchymal stromal cells (WJ-MSCs) were cultured in Cholinergic-N-Run and Fast-N-Spheres V2 medium to obtain WT and PSEN 1 E280A cholinergic-like neurons (ChLNs, 2D) and cerebroid spheroids (CSs, 3D), respectively, and to evaluate whether ChLNs/CSs can reproduce FAD pathology. We found that irrespective of tissue source, ChLNs/CSs successfully recapitulated the AD phenotype. PSEN 1 E280A ChLNs/CSs show accumulation of iAPPß fragments, produce eAß42, present TAU phosphorylation, display OS markers (e.g., oxDJ-1, p-JUN), show loss of ΔΨm, exhibit cell death markers (e.g., TP53, PUMA, CASP3), and demonstrate dysfunctional Ca2+ influx response to ACh stimuli. However, PSEN 1 E280A 2D and 3D cells derived from MenSCs and WJ-MSCs can reproduce FAD neuropathology more efficiently and faster (11 days) than ChLNs derived from mutant iPSCs (35 days). Mechanistically, MenSCs and WJ-MSCs are equivalent cell types to iPSCs for reproducing FAD in vitro.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Alzheimer/metabolismo , Neurônios Colinérgicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Colinérgicos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo
16.
J Neurol Sci ; 450: 120663, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37182424

RESUMO

Neurological infections, such as Cerebral malaria (CM) and meningitis are associated with high mortality and in survivors, particularly young children, persistent neurologic deficits often remain. As brain inflammation plays a role in the development of these neurological sequelae, multiplex assays were used to assess a select set of immune mediators in both plasma and cerebrospinal fluid (CSF) from Zambian children with neurological infections. Both CM and meningitis patients showed high levels of markers for vascular inflammation, such as soluble ICAM-1 and angiopoietins. Although high levels of angiopoietin 1 and angiopoietin 2 were found in the meningitis group, their levels in the CSF were low and did not differ. As expected, there were high levels of cytokines and notably a significantly elevated IL-6 level in the CSF of the meningitis group. Interestingly, although elevated levels BDNF were found, BDNF levels were significantly higher in plasma of the meningitis group but similar in the CSF. The striking differences in plasma BDNF and IL-6 levels in the CSF point to markedly different neuro-pathological processes. Therefore, further investigations in the role of both IL-6 and BDNF in the neurological outcomes are needed.


Assuntos
Malária Cerebral , Meningite , Criança , Pré-Escolar , Humanos , Fator Neurotrófico Derivado do Encéfalo , Citocinas/líquido cefalorraquidiano , Interleucina-6/líquido cefalorraquidiano , Malária Cerebral/líquido cefalorraquidiano , Meningite/líquido cefalorraquidiano
17.
ACS Chem Neurosci ; 14(11): 2159-2171, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37220279

RESUMO

Parkinson's disease (PD), a progressive neurodegenerative movement disorder, has reached pandemic status worldwide. This neurologic disorder is caused primarily by the specific deterioration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNc). Unfortunately, there are no therapeutic agents that slow or delay the disease progression. Herein, menstrual stromal cell-derived dopamine-like neurons (DALNs) intoxicated with paraquat (PQ2+)/maneb (MB) were used as a model system to elucidate the mechanism by which CBD protects the neural cell from apoptosis in vitro. According to immunofluorescence microscopy, flow cytometry, cell-free assay, and molecular docking analysis, we demonstrate that CBD offers protection to DALNs against PQ2+ (1 mM)/MB (50 µM)-induced oxidative stress (OS) by simultaneously (i) decreasing reactive oxygen species (ROS: O2•-, H2O2), (ii) maintaining the mitochondrial membrane potential (ΔΨm), (iii) directly binding to stress sensor protein DJ-1, thereby blunting its oxidation from DJ-1CYS106-SH into DJ-1CYS106-SO3, and (iv) directly binding to pro-apoptotic protease protein caspase 3 (CASP3), thereby disengaging neuronal dismantling. Furthermore, the protective effect of CBD on DJ-1 and CASP3 was independent of CB1 and CB2 receptor signaling. CBD also re-established the Ca2+ influx in DALNs as a response to dopamine (DA) stimuli under PQ2+/MB exposure. Because of its powerful antioxidant and antiapoptotic effects, CBD offers potential therapeutic utility in the treatment of PD.


Assuntos
Canabidiol , Maneb , Doença de Parkinson , Humanos , Paraquat/toxicidade , Paraquat/metabolismo , Maneb/toxicidade , Maneb/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Canabidiol/farmacologia , Canabidiol/metabolismo , Caspase 3/metabolismo , Dopamina/metabolismo , Receptores de Canabinoides/metabolismo , Peróxido de Hidrogênio/farmacologia , Simulação de Acoplamento Molecular , Morte Celular , Neurônios Dopaminérgicos/metabolismo , Estresse Oxidativo
18.
Exp Neurol ; 365: 114409, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37061175

RESUMO

Microphysiological systems (MPS) are 2D or 3D multicellular constructs able to mimic tissue microenvironments. The latest models encompass a range of techniques, including co-culturing of various cell types, utilization of scaffolds and extracellular matrix materials, perfusion systems, 3D culture methods, 3D bioprinting, organ-on-a-chip technology, and examination of tissue structures. Several human brain 3D cultures or brain MPS (BMPS) have emerged in the last decade. These organoids or spheroids are 3D culture systems derived from induced pluripotent cells or embryonic stem cells that contain neuronal and glial populations and recapitulate structural and physiological aspects of the human brain. BMPS have been introduced recently in the study and modeling of neuroinfectious diseases and have proven to be useful in establishing neurotropism of viral infections, cell-pathogen interactions needed for infection, assessing cytopathological effects, genomic and proteomic profiles, and screening therapeutic compounds. Here we review the different methodologies of organoids used in neuroinfectious diseases including spheroids, guided and unguided protocols as well as microglia and blood-brain barrier containing models, their specific applications, and limitations. The review provides an overview of the models existing for specific infections including Zika, Dengue, JC virus, Japanese encephalitis, measles, herpes, SARS-CoV2, and influenza viruses among others, and provide useful concepts in the modeling of disease and antiviral agent screening.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Infecção por Zika virus , Zika virus , Humanos , Sistemas Microfisiológicos , Proteômica , RNA Viral , COVID-19/patologia , SARS-CoV-2 , Encéfalo , Infecção por Zika virus/patologia , Células-Tronco Pluripotentes Induzidas/fisiologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-37015826

RESUMO

Prior case studies suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its vaccines may unmask CNS neuroinflammatory conditions. We present a case of relapsing steroid-responsive encephalomyelitis after SARS-CoV-2 infection and subsequent COVID-19 vaccination. We also characterize the frequency of CNS neuroinflammatory events reported in the literature after both SARS-CoV-2 infection and COVID-19 vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Encefalomielite , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Encefalomielite/diagnóstico , SARS-CoV-2 , Vacinação/efeitos adversos
20.
Cells ; 12(5)2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36899952

RESUMO

The development of long-term symptoms of coronavirus disease 2019 (COVID-19) more than four weeks after primary infection, termed "long COVID" or post-acute sequela of COVID-19 (PASC), can implicate persistent neurological complications in up to one third of patients and present as fatigue, "brain fog", headaches, cognitive impairment, dysautonomia, neuropsychiatric symptoms, anosmia, hypogeusia, and peripheral neuropathy. Pathogenic mechanisms of these symptoms of long COVID remain largely unclear; however, several hypotheses implicate both nervous system and systemic pathogenic mechanisms such as SARS-CoV2 viral persistence and neuroinvasion, abnormal immunological response, autoimmunity, coagulopathies, and endotheliopathy. Outside of the CNS, SARS-CoV-2 can invade the support and stem cells of the olfactory epithelium leading to persistent alterations to olfactory function. SARS-CoV-2 infection may induce abnormalities in innate and adaptive immunity including monocyte expansion, T-cell exhaustion, and prolonged cytokine release, which may cause neuroinflammatory responses and microglia activation, white matter abnormalities, and microvascular changes. Additionally, microvascular clot formation can occlude capillaries and endotheliopathy, due to SARS-CoV-2 protease activity and complement activation, can contribute to hypoxic neuronal injury and blood-brain barrier dysfunction, respectively. Current therapeutics target pathological mechanisms by employing antivirals, decreasing inflammation, and promoting olfactory epithelium regeneration. Thus, from laboratory evidence and clinical trials in the literature, we sought to synthesize the pathophysiological pathways underlying neurological symptoms of long COVID and potential therapeutics.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Humanos , COVID-19/complicações , SARS-CoV-2 , RNA Viral , Doenças do Sistema Nervoso/etiologia , Inflamação/complicações , Síndrome de COVID-19 Pós-Aguda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...