Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8256, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589552

RESUMO

Yellowfin tuna, Thunnus albacares, represents an important component of commercial and recreational fisheries in the Gulf of Mexico (GoM). We investigated the influence of environmental conditions on the spatiotemporal distribution of yellowfin tuna using fisheries' catch data spanning 2012-2019 within Mexican waters. We implemented hierarchical Bayesian regression models with spatial and temporal random effects and fixed effects of several environmental covariates to predict habitat suitability (HS) for the species. The best model included spatial and interannual anomalies of the absolute dynamic topography of the ocean surface (ADTSA and ADTIA, respectively), bottom depth, and a seasonal cyclical random effect. High catches occurred mainly towards anticyclonic features at bottom depths > 1000 m. The spatial extent of HS was higher in years with positive ADTIA, which implies more anticyclonic activity. The highest values of HS (> 0.7) generally occurred at positive ADTSA in oceanic waters of the central and northern GoM. However, high HS values (> 0.6) were observed in the southern GoM, in waters with cyclonic activity during summer. Our results highlight the importance of mesoscale features for the spatiotemporal distribution of yellowfin tunas and could help to develop dynamic fisheries management strategies in Mexico and the U.S. for this valuable resource.


Assuntos
Ecossistema , Atum , Animais , Golfo do México , Teorema de Bayes , Oceanos e Mares
2.
Mar Environ Res ; 163: 105201, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33162117

RESUMO

Migratory marine megafauna generally move vast distances between productive foraging grounds and environmentally stable breeding grounds, but characterizing how they use these habitats to maintain homeostasis and reproduce is difficult. We used isotope analysis of blue whale skin strata (n = 621) and potential prey (n = 300) to examine their migratory and foraging strategies in the eastern Pacific Ocean. Our results suggest that most whales in the northeast Pacific use a mixed income and capital breeding strategy, and use the California Current Ecosystem as their primary summer-fall foraging ground. A subset of individuals exhibited migratory plasticity and spend most of the year in the Gulf of California or Costa Rica Dome, two regions believed to be their primary winter-spring breeding grounds. Isotope data also revealed that whales in the southern Eastern Tropical Pacific generally do not forage in the northeast Pacific, which suggests a north-south population structure with a boundary near the equator.


Assuntos
Balaenoptera , Migração Animal , Animais , Ecossistema , Isótopos , Oceano Pacífico , Estações do Ano
3.
Sci Rep ; 10(1): 10499, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591624

RESUMO

The population growth of top predators depends largely on environmental conditions suitable for aggregating sufficient and high-quality prey. We reconstructed numerically the size of a resident population of California sea lions in the Gulf of California during 1978-2019 and its relation with multi-decadal sea surface temperature anomalies. This is the first multi-decadal examination of the sea surface temperature of the Gulf of California and of one of its major predators. A three-decade sustained warming explained the population's trend accounting for 92% of the variance, including a 65% decline between 1991 and 2019. Long-term warming conditions started in the late 80s, followed by the population's decline from 43,834 animals (range 34,080-58,274) in 1991 to only 15,291 (range 11,861-20,316) in 2019. The models suggested a century-scale optimum sea surface habitat occurring in mildly temperate waters, from 0.18 to 0.39 °C above the 100-year mean. The mechanistic links of this relation are still untested, but apparent diversification of pelagic fish catches suggests a reduction of high quality prey. We propose this population should be considered vulnerable to any disturbance that could add to the negative effects of the current warm sea surface conditions in the Gulf of California.


Assuntos
Leões-Marinhos/crescimento & desenvolvimento , Animais , Ecossistema , Oceanos e Mares , Dinâmica Populacional , Temperatura
4.
Conserv Physiol ; 7(1): coz059, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31687140

RESUMO

Fin whales in the Gulf of California constitute a resident population genetically isolated from the rest of the North Pacific Ocean. Its small population size and the scarce information available about its dynamics in a semi-enclosed sea underline the importance of conducting studies about its reproduction. Given the monsoonal regime that dominates the oceanographic habitat of this region, we hypothesized seasonality in the population's reproductive activity. To test this, we validated and assayed testosterone and progesterone from blubber biopsies of free-ranging individuals. Lactating females exhibited low progesterone concentrations, whereas a group of females of unknown reproductive stage, but with extremely high progesterone concentrations, showed strong evidence of separation and were considered to be likely ovulating or pregnant. A seasonal model of testosterone concentrations showed a high peak during the late summer. This trend was supported by the first documentation of courtship events and by the recording of a female with high progesterone concentration during summer and re-sighted with a calf 1 year later. Therefore, the breeding in this resident population would be seasonal, as it is in migratory baleen whales, but occurring during the summer/autumn, which is the least productive season in the Gulf of California. Our study represents an important input to assist in future management policies of this protected population.

5.
PLoS One ; 10(3): e0120727, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25785692

RESUMO

We inferred the population densities of blue whales (Balaenoptera musculus) and short-beaked common dolphins (Delphinus delphis) in the Northeast Pacific Ocean as functions of the water-column's physical structure by implementing hierarchical models in a Bayesian framework. This approach allowed us to propagate the uncertainty of the field observations into the inference of species-habitat relationships and to generate spatially explicit population density predictions with reduced effects of sampling heterogeneity. Our hypothesis was that the large-scale spatial distributions of these two cetacean species respond primarily to ecological processes resulting from shoaling and outcropping of the pycnocline in regions of wind-forced upwelling and eddy-like circulation. Physically, these processes affect the thermodynamic balance of the water column, decreasing its volume and thus the height of the absolute dynamic topography (ADT). Biologically, they lead to elevated primary productivity and persistent aggregation of low-trophic-level prey. Unlike other remotely sensed variables, ADT provides information about the structure of the entire water column and it is also routinely measured at high spatial-temporal resolution by satellite altimeters with uniform global coverage. Our models provide spatially explicit population density predictions for both species, even in areas where the pycnocline shoals but does not outcrop (e.g. the Costa Rica Dome and the North Equatorial Countercurrent thermocline ridge). Interannual variations in distribution during El Niño anomalies suggest that the population density of both species decreases dramatically in the Equatorial Cold Tongue and the Costa Rica Dome, and that their distributions retract to particular areas that remain productive, such as the more oceanic waters in the central California Current System, the northern Gulf of California, the North Equatorial Countercurrent thermocline ridge, and the more southern portion of the Humboldt Current System. We posit that such reductions in available foraging habitats during climatic disturbances could incur high energetic costs on these populations, ultimately affecting individual fitness and survival.


Assuntos
Cetáceos , Modelos Estatísticos , Oceanos e Mares , Animais , Teorema de Bayes , Densidade Demográfica , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...