Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inflammation ; 45(6): 2498-2512, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35867264

RESUMO

Angiotensin II (Ang-II) is a widely studied hypertensive, profibrotic, and pro-inflammatory peptide. In the heart, cardiac fibroblasts (CF) express type 1 angiotensin II receptors (AT1R), Toll-like receptor-4 (TLR4), and the NLRP3 inflammasome complex, which play important roles in pro-inflammatory processes. When activated, the NLRP3 inflammasome triggers proteolytic cleavage of pro-IL-1, resulting in its activation. However, in CF the mechanism by which Ang-II assembles and activates the NLRP3 inflammasome remains not fully known. To elucidate this important point, we stimulated TLR4 receptors in CF and evaluated the signaling pathways by which Ang-II triggers the assembly and activity. In cultured rat CF, pro-IL-1ß levels, NLRP3, ASC, and caspase-1 expression levels were determined by Western blot. NLRP3 inflammasome complex assembly was analyzed by immunocytochemistry, whereas by ELISA, we analyzed NLRP3 inflammasome activity and [Formula: see text] release. In CF, Ang-II triggered NLRP3 inflammasome assembly and caspase-1 activity; and in LPS-pretreated CF, Ang-II also triggered [Formula: see text] secretion. These effects were blocked by losartan (AT1R antagonist), U73221 (PLC inhibitor), 2-APB (IP3R antagonist), and BAPTA-AM (Ca2+ chelator) indicating that the AT1R/PLC/IP3R/Ca2+ pathway is involved. Finally, bafilomycin A1 prevented Ang-II-induced [Formula: see text] secretion, indicating that a non-classical protein secretion mechanism is involved. These findings suggest that in CF, Ang-II by a Ca2+-dependent mechanism triggers NLRP3 inflammasome assembly and activation leading to [Formula: see text] secretion through a non-conventional protein secretion mechanism.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Angiotensina II/farmacologia , Receptor 4 Toll-Like , Interleucina-1beta/metabolismo , Caspase 1/metabolismo , Fibroblastos/metabolismo
2.
Front Cardiovasc Med ; 8: 660197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34169098

RESUMO

Death of cardiac fibroblasts (CFs) by ischemia/reperfusion (I/R) has major implications for cardiac wound healing. In in vivo models of myocardial infarction, toll-like receptor 4 (TLR4) activation has been reported as a cardioprotector; however, it remains unknown whether TLR4 activation can prevent CF death triggered by simulated I/R (sI/R). In this study, we analyzed TLR4 activation in neonate CFs exposed to an in vitro model of sI/R and explored the participation of the pro-survival kinases Akt and ERK1/2. Simulated ischemia was performed in a free oxygen chamber in an ischemic medium, whereas reperfusion was carried out in normal culture conditions. Cell viability was analyzed by trypan blue exclusion and the MTT assay. Necrotic and apoptotic cell populations were evaluated by flow cytometry. Protein levels of phosphorylated forms of Akt and ERK1/2 were analyzed by Western blot. We showed that sI/R triggers CF death by necrosis and apoptosis. In CFs exposed only to simulated ischemia or only to sI/R, blockade of the TLR4 with TAK-242 further reduced cell viability and the activation of Akt and ERK1/2. Preconditioning with lipopolysaccharide (LPS) or treatment with LPS in ischemia or reperfusion was not protective. However, LPS incubation during both ischemia and reperfusion periods prevented CF viability loss induced by sI/R. Furthermore, LPS treatment reduced the sub-G1 population, but not necrosis of CFs exposed to sI/R. On the other hand, the protective effects exhibited by LPS were abolished when TLR4 was blocked and Akt and ERK1/2 were inhibited. In conclusion, our results suggest that TLR4 activation protects CFs from apoptosis induced by sI/R through the activation of Akt and ERK1/2 signaling pathways.

3.
Molecules ; 24(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791388

RESUMO

New histone deacetylases (HDAC) inhibitors with low toxicity to non-cancerous cells, are a prevalent issue at present because these enzymes are actively involved in fibrotic diseases. We designed and synthesized a novel series of thiazolyl-coumarins, substituted at position 6 (R = H, Br, OCH3), linked to classic zinc binding groups, such as hydroxamic and carboxylic acid moieties and alternative zinc binding groups such as disulfide and catechol. Their in vitro inhibitory activities against HDACs were evaluated. Disulfide and hydroxamic acid derivatives were the most potent ones. Assays with neonatal rat cardiac fibroblasts demonstrated low cytotoxic effects for all compounds. Regarding the parameters associated to cardiac fibrosis development, the compounds showed antiproliferative effects, and triggered a strong decrease on the expression levels of both α-SMA and procollagen I. In conclusion, the new thiazolyl-coumarin derivatives inhibit HDAC activity and decrease profibrotic effects on cardiac fibroblasts.


Assuntos
Cumarínicos/síntese química , Cumarínicos/farmacologia , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Biomarcadores , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Cumarínicos/química , Fibrose , Expressão Gênica , Inibidores de Histona Desacetilases/química , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Ratos
4.
Front Pharmacol ; 9: 1368, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555324

RESUMO

Cardiac fibroblasts (CFs) contribute to theinflammatory response to tissue damage, secreting both pro- and anti-inflammatory cytokines and chemokines. Interferon beta (IFN-ß) induces the phosphorylation of signal transducer and activator of transcription (STAT) proteins through the activation of its own receptor, modulating the secretion of cytokines and chemokines which regulate inflammation. However, the role of IFN-ß and STAT proteins in modulating the inflammatory response of CF remains unknown. CF were isolated from adult male rats and subsequently stimulated with IFN-ß to evaluate the participation of STAT proteins in secreting chemokines, cytokines, cell adhesion proteins expression and in their capacity to recruit neutrophils. In addition, in CF in which the TRL4 receptor was pre-activated, the effect of INF-ß on the aforementioned responses was also evaluated. Cardiac fibroblasts stimulation with IFN-ß showed an increase in STAT1, STAT2, and STAT3 phosphorylation. IFN-ß stimulation through STAT1 activation increased proinflammatory chemokines MCP-1 and IP-10 secretion, whereas IFN-ß induced activation of STAT3 increased cytokine secretion of anti-inflammatory IL-10. Moreover, in TLR4-activated CF, IFN-ß through STAT2 and/or STAT3, produced an anti-inflammatory effect, reducing pro-IL-1ß, TNF-α, IL-6, MCP-1, and IP-10 secretion; and decreasing neutrophil recruitment by decreasing ICAM-1 and VCAM-1 expression. Altogether, our results indicate that IFN-ß exerts both pro-inflammatory and anti-inflammatory effects in non-stimulated CF, through differential activation of STAT proteins. When CF were previously treated with an inflammatory agent such as TLR-4 activation, IFN-ß effects were predominantly anti-inflammatory.

5.
Toxicol Appl Pharmacol ; 351: 46-56, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29775649

RESUMO

Cardiac fibroblasts (CF) are key cells for maintaining extracellular matrix (ECM) protein homeostasis in the heart, and for cardiac repair through CF-to-cardiac myofibroblast (CMF) differentiation. Additionally, CF play an important role in the inflammatory process after cardiac injury, and they express Toll like receptor 4 (TLR4), B1 and B2 bradykinin receptors (B1R and B2R) which are important in the inflammatory response. B1R and B2R are induced by proinflammatory cytokines and their activation by bradykinin (BK: B2R agonist) or des-arg-kallidin (DAKD: B1R agonist), induces NO and PGI2 production which is key for reducing collagen I levels. However, whether TLR4 activation regulates bradykinin receptor expression remains unknown. CF were isolated from human, neonatal rat and adult mouse heart. B1R mRNA expression was evaluated by qRT-PCR, whereas B1R, collagen, COX-2 and iNOS protein levels were evaluated by Western Blot. NO and PGI2 were evaluated by commercial kits. We report here that in CF, TLR4 activation increased B1R mRNA and protein levels, as well as COX-2 and iNOS levels. B1R mRNA levels were also induced by interleukin-1α via its cognate receptor IL-1R1. In LPS-pretreated CF the DAKD treatment induced higher responses with respect to those observed in non LPS-pretreated CF, increasing PGI2 secretion and NO production; and reducing collagen I protein levels in CF. In conclusion, no significant response to DAKD was observed (due to very low expression of B1R in CF) - but pre-activation of TLR4 in CF, conditions that significantly enhanced B1R expression, led to an additional response of DAKD.


Assuntos
Fibroblastos/metabolismo , Miócitos Cardíacos/metabolismo , Receptor B1 da Bradicinina/biossíntese , Receptor 4 Toll-Like/biossíntese , Animais , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Expressão Gênica , Humanos , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor B1 da Bradicinina/agonistas , Receptor B1 da Bradicinina/genética , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/genética
6.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 831-842, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29222072

RESUMO

Cardiac fibroblasts (CF) act as sentinel cells responding to chemokines, cytokines and growth factors released in cardiac tissue in cardiac injury events, such as myocardial infarction (MI). Cardiac injury involves the release of various damage-associated molecular patterns (DAMPs) including heparan sulfate (HS), a constituent of the extracellular matrix (ECM), through the TLR4 receptor activation triggering a strong inflammatory response, inducing leukocytes recruitment. This latter cells are responsible of clearing cell debris and releasing cytokines that promote CF differentiation to myofibroblast (CMF), thus initiating scar formation. CF were isolated from adult male rats and subsequently stimulated with HS or LPS, in the presence or absence of chemical inhibitors, to evaluate signaling pathways involved in ICAM-1 and VCAM-1 expression. siRNA against ICAM-1 and VCAM-1 were used to evaluate participation of these adhesion molecules on leukocytes recruitment. HS through TLR4, PI3K/AKT and NF-ΚB increased ICAM-1 and VCAM-1 expression, which favored the adhesion of spleen mononuclear cells (SMC) and bone marrow granulocytes (PMN) to CF. These effects were prevented by siRNA against ICAM-1 and VCAM-1. Co-culture of CF with SMC increased α-SMA expression, skewing CF towards a pro-fibrotic phenotype, while CF pretreatment with HS partially reverted this effect. CONCLUSION: These data show the dual role of HS during the initial stages of wound healing. Initially, HS enhance the pro-inflammatory role of CF increasing cytokines secretion; and later, by increasing protein adhesion molecules allows the adhesion of SMC on CF, which trigger CF-to-CMF differentiation.


Assuntos
Adesão Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Heparitina Sulfato/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/efeitos dos fármacos , Miocárdio/citologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Células Cultivadas , Fibroblastos/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/genética , Leucócitos/fisiologia , Masculino , Miocárdio/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Molécula 1 de Adesão de Célula Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...