Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 48, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829230

RESUMO

Aging is associated with loss of circadian immune responses and circadian gene transcription in peripheral macrophages. Microglia, the resident macrophages of the brain, also show diurnal rhythmicity in regulating local immune responses and synaptic remodeling. To investigate the interaction between aging and microglial circadian rhythmicity, we examined mice deficient in the core clock transcription factor, BMAL1. Aging Cd11bcre;Bmallox/lox mice demonstrated accelerated cognitive decline in association with suppressed hippocampal long-term potentiation and increases in immature dendritic spines. C1q deposition at synapses and synaptic engulfment were significantly decreased in aging Bmal1-deficient microglia, suggesting that BMAL1 plays a role in regulating synaptic pruning in aging. In addition to accelerated age-associated hippocampal deficits, Cd11bcre;Bmallox/lox mice also showed deficits in the sleep-wake cycle with increased wakefulness across light and dark phases. These results highlight an essential role of microglial BMAL1 in maintenance of synapse homeostasis in the aging brain.


Assuntos
Envelhecimento Cognitivo , Microglia , Camundongos , Animais , Microglia/metabolismo , Proteínas CLOCK/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Plasticidade Neuronal
2.
Nature ; 543(7646): 513-518, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28297714

RESUMO

Plants live in biogeochemically diverse soils with diverse microbiota. Plant organs associate intimately with a subset of these microbes, and the structure of the microbial community can be altered by soil nutrient content. Plant-associated microbes can compete with the plant and with each other for nutrients, but may also carry traits that increase the productivity of the plant. It is unknown how the plant immune system coordinates microbial recognition with nutritional cues during microbiome assembly. Here we establish that a genetic network controlling the phosphate stress response influences the structure of the root microbiome community, even under non-stress phosphate conditions. We define a molecular mechanism regulating coordination between nutrition and defence in the presence of a synthetic bacterial community. We further demonstrate that the master transcriptional regulators of phosphate stress response in Arabidopsis thaliana also directly repress defence, consistent with plant prioritization of nutritional stress over defence. Our work will further efforts to define and deploy useful microbes to enhance plant performance.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Microbiota/fisiologia , Fosfatos/metabolismo , Imunidade Vegetal , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Microbiota/imunologia , Mutação , Imunidade Vegetal/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Science ; 349(6250): 860-4, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26184915

RESUMO

Immune systems distinguish "self" from "nonself" to maintain homeostasis and must differentially gate access to allow colonization by potentially beneficial, nonpathogenic microbes. Plant roots grow within extremely diverse soil microbial communities but assemble a taxonomically limited root-associated microbiome. We grew isogenic Arabidopsis thaliana mutants with altered immune systems in a wild soil and also in recolonization experiments with a synthetic bacterial community. We established that biosynthesis of, and signaling dependent on, the foliar defense phytohormone salicylic acid is required to assemble a normal root microbiome. Salicylic acid modulates colonization of the root by specific bacterial families. Thus, plant immune signaling drives selection from the available microbial communities to sculpt the root microbiome.


Assuntos
Microbiota/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Ácido Salicílico/metabolismo , Microbiologia do Solo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Microbiota/efeitos dos fármacos , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/genética , Ácido Salicílico/farmacologia
4.
PLoS One ; 9(12): e115225, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506936

RESUMO

The second-generation antipsychotic olanzapine is effective in reducing psychotic symptoms but can cause extreme weight gain in human patients. We investigated the role of the gut microbiota in this adverse drug effect using a mouse model. First, we used germ-free C57BL/6J mice to demonstrate that gut bacteria are necessary and sufficient for weight gain caused by oral delivery of olanzapine. Second, we surveyed fecal microbiota before, during, and after treatment and found that olanzapine potentiated a shift towards an "obesogenic" bacterial profile. Finally, we demonstrated that olanzapine has antimicrobial activity in vitro against resident enteric bacterial strains. These results collectively provide strong evidence for a mechanism underlying olanzapine-induced weight gain in mouse and a hypothesis for clinical translation in human patients.


Assuntos
Antipsicóticos/toxicidade , Benzodiazepinas/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos , Animais , Feminino , Camundongos , Olanzapina
5.
Bioinformatics ; 29(12): 1485-7, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23047559

RESUMO

MOTIVATION: It has been known for more than 2 decades that after RNA polymerase II (RNAPII) initiates transcription, it can enter into a paused or stalled state immediately downstream of the transcription start site before productive elongation. Recent advances in high-throughput genomic technologies facilitated the discovery that RNAPII pausing at promoters is a widespread physiologically regulated phenomenon. The molecular underpinnings of pausing are incompletely understood. The CCCTC-factor (CTCF) is a ubiquitous nuclear factor that has diverse regulatory functions, including a recently discovered role in promoting RNAPII pausing at splice sites. RESULTS: In this study, we analyzed CTCF binding sites and nascent transcriptomic data from three different cell types, and found that promoter-proximal CTCF binding is significantly associated with RNAPII pausing.


Assuntos
Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Animais , Sítios de Ligação , Fator de Ligação a CCCTC , Linhagem Celular , Células Cultivadas , Humanos , Camundongos
6.
Nature ; 488(7409): 86-90, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22859206

RESUMO

Land plants associate with a root microbiota distinct from the complex microbial community present in surrounding soil. The microbiota colonizing the rhizosphere (immediately surrounding the root) and the endophytic compartment (within the root) contribute to plant growth, productivity, carbon sequestration and phytoremediation. Colonization of the root occurs despite a sophisticated plant immune system, suggesting finely tuned discrimination of mutualists and commensals from pathogens. Genetic principles governing the derivation of host-specific endophyte communities from soil communities are poorly understood. Here we report the pyrosequencing of the bacterial 16S ribosomal RNA gene of more than 600 Arabidopsis thaliana plants to test the hypotheses that the root rhizosphere and endophytic compartment microbiota of plants grown under controlled conditions in natural soils are sufficiently dependent on the host to remain consistent across different soil types and developmental stages, and sufficiently dependent on host genotype to vary between inbred Arabidopsis accessions. We describe different bacterial communities in two geochemically distinct bulk soils and in rhizosphere and endophytic compartments prepared from roots grown in these soils. The communities in each compartment are strongly influenced by soil type. Endophytic compartments from both soils feature overlapping, low-complexity communities that are markedly enriched in Actinobacteria and specific families from other phyla, notably Proteobacteria. Some bacteria vary quantitatively between plants of different developmental stage and genotype. Our rigorous definition of an endophytic compartment microbiome should facilitate controlled dissection of plant-microbe interactions derived from complex soil communities.


Assuntos
Arabidopsis/microbiologia , Endófitos/classificação , Endófitos/isolamento & purificação , Metagenoma , Raízes de Plantas/microbiologia , Microbiologia do Solo , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Arabidopsis/classificação , Arabidopsis/crescimento & desenvolvimento , Endófitos/genética , Genótipo , Hibridização in Situ Fluorescente , Raízes de Plantas/classificação , Raízes de Plantas/crescimento & desenvolvimento , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Rizosfera , Ribotipagem , Análise de Sequência de DNA , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...