Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(25): 6221-6241, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38835196

RESUMO

Traumatic injuries, neurodegenerative diseases and oxidative stress serve as the early biomarkers for neuronal damage and impede angiogenesis and subsequently neuronal growth. Considering this, the present work aimed to develop a poly(N-acryloylglycine)-co-(acrylamide)-co-(N-acryloylglutamate) hydrogel [p(NAG-Ac-NAE)] with angiogenesis/neurogenesis properties. As constituents of this polymer modulate their vital role in biological functions, inhibitory neurotransmitter glycine regulates neuronal homeostasis, and glutamatergic signalling regulates angiogenesis. The p(NAG-Ac-NAE) hydrogel is a highly branched, biodegradable and pH-responsive polymer with a very high swelling behavior of 6188%. The mechanical stability (G', 2.3-2.7 kPa) of this polymeric hydrogel is commendable in the differentiation of mature neurons. This hydrogel is biocompatible (as tested in HUVEC cells) and helps to proliferate PC12 cells (152.7 ± 13.7%), whereas it is cytotoxic towards aggressive cancers such as glioblastoma (LN229 cells) and triple negative breast cancer (TNBC; MDA-MB-231 cells) and helps to maintain the healthy cytoskeleton framework structure of primary cortical neurons by facilitating the elongation of the axonal pathway. Furthermore, FACS results revealed that the synthesized hydrogel potentiates neurogenesis by inducing the cell cycle (G0/G1) and arresting the sub-G1 phase by limiting apoptosis. Additionally, RT-PCR results revealed that this hydrogel induced an increased level of HIF-1α expression, providing preconditioning effects towards neuronal cells under oxidative stress by scavenging ROS and initiating neurogenic and angiogenic signalling. This hydrogel further exhibits more pro-angiogenic activities by increasing the expression of VEGF isoforms compared to previously reported hydrogels. In conclusion, the newly synthesized p(NAG-Ac-NAE) hydrogel can be one of the potential neuroregenerative materials for vasculogenesis-assisted neurogenic applications and paramount for the management of neurodegenerative diseases.


Assuntos
Hidrogéis , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Humanos , Animais , Ratos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Neurogênese/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células PC12 , Neovascularização Fisiológica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química
2.
Biomed Mater ; 19(2)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38364283

RESUMO

A facile cost-effective green synthesis approach has been used to synthesize carbon-dot (CDs) from the Kernel part of theAzadirachta Indicaseeds and investigated their fluorescent and metal ions sensing capability and also used for the delivery of drugs. Metallic ions such as Ca2+, K+, Na+, Fe3+,and Zn2+which are biologically important for many reactions and are selectively detected through the novel CDs. The resultant dot size of CDs (∼4 nm) is useful to eliminate the 'Achilles heel' problems, which is associated with the Zn2+in the body and its detection is a very challenging task. It is found that the sensitivity of CDs for the detection of Zn2+can be regulated by using different solvents. These CDs can also be used as a sensing probe for the selective detection of Fe3+at a very low concentration of solution (∼5 µM). The synthesis method of CDs reported here is cost-effective, very fast and it is highly selective towards Fe3+and Zn2+. Due to the fast response capability of these CDs, logic gate operation is achieved and it provides a new understanding to construct potential next-generation molecular devices for the detection of different biomolecules with high selectivity. Additionally, these CDs are biocompatible against normal healthy cells, capable of loading small biomolecules and drugs due to their porous nature, and exhibited potential impact for breast cancer therapy. It is observed that a significant synergic therapeutic effect of CDs loaded with doxorubicin against breast cancer cells is very promising. Thus, the CDs reported herein in this work have been synthesized through a green synthesis approach and can be used as a molecular probe for the detection of metal ions as well as for drug delivery applications.


Assuntos
Neoplasias da Mama , Pontos Quânticos , Humanos , Feminino , Carbono , Análise Custo-Benefício , Metais , Corantes Fluorescentes , Íons
3.
ACS Infect Dis ; 10(2): 287-316, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38237146

RESUMO

In this era of advanced technology and innovation, infectious diseases still cause significant morbidity and mortality, which need to be addressed. Despite overwhelming success in the development of vaccines, transmittable diseases such as tuberculosis and AIDS remain unprotected, and the treatment is challenging due to frequent mutations of the pathogens. Formulations of new or existing drugs with polymeric materials have been explored as a promising new approach. Variations in shape, size, surface charge, internal morphology, and functionalization position polymer particles as a revolutionary material in healthcare. Here, an overview is provided of major diseases along with statistics on infection and death rates, focusing on polymer-based treatments and modes of action. Key issues are discussed in this review pertaining to current challenges and future perspectives.


Assuntos
Doenças Transmissíveis , Tuberculose , Vacinas , Humanos , Polímeros , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/tratamento farmacológico
4.
Nanoscale ; 16(4): 1770-1791, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38170815

RESUMO

Endogenous gasotransmitter nitric oxide (NO) is a central signalling molecule that modulates wound healing by maintaining homeostasis, collagen formation, wound contraction, anti-microbial action and accelerating tissue regeneration. The optimum delivery of NO using nanoparticles (NPs) is clinically challenging; hence, it is drawing significant attention in wound healing. Herein, a novel polymeric nanoplatform loaded with sodium nitroprusside (SP) NPs was prepared and used for wound healing to obtain the sustained release of NO in therapeutic quantities. SP NPs-induced excellent proliferation (∼300%) of mouse fibroblast (L929) cells was observed. With an increase in the SP NPs dose at 200 µg mL-1 concentration, a 200% upsurge in proliferation was observed along with enhanced migration, and only 17.09 h were required to fill the 50% gap compared to 37.85 h required by the control group. Further, SP NPs showed an insignificant impact on the coagulation cascade, revealing safe wound-healing treatment when tested in isolated rat RBCs. Additionally, SP NPs exhibited excellent angiogenic activity at a 10 µg mL-1 dose. Moreover, the formulated SP nanoformulation is non-irritant, non-toxic, and does not produce any skin sensitivity reaction on the rat's skin. Further, an in vivo wound healing study revealed that within 11 days of treatment with SP nanoformulation, 99.2 ± 1.0% of the wound was closed, while in the control group, only 45.5 ± 3.8% was repaired. These results indicate that owing to sustained NO release, the SP NP and SP nanoformulations are paramount with enormous clinical potential for the regeneration of wound tissues.


Assuntos
Óxido Nítrico , Cicatrização , Camundongos , Ratos , Animais , Óxido Nítrico/farmacologia , Pele , Anti-Inflamatórios , Polímeros , Aminoácidos
5.
ACS Appl Bio Mater ; 6(12): 5644-5661, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37993284

RESUMO

In this work, the glycine-based acryloyl monomer is polymerized to obtain a neurogenic polymeric hydrogel for regenerative applications. The synthesized poly(N-acryloylglycine-acrylamide) [poly(NAG-b-A)] nanohydrogel exhibits high swelling (∼1500%) and is mechanically very stable, biocompatible, and proliferative in nature. The poly(NAG-b-A) nanohydrogel provides a stable 3D extracellular mimetic environment and promotes healthy neurite growth for primary cortical neurons by facilitating cellular adhesion, proliferation, actin filament stabilization, and neuronal differentiation. Furthermore, the protective role of the poly(NAG-b-A) hydrogel for the neurons in oxidative stress conditions is revealed and it is found that it is a clinically relevant material for neuronal regenerative applications, such as for promoting nerve regeneration via GSK3ß inhibition. This hydrogel additionally plays an important role in modulating the biological microenvironment, either as an agonist and antagonist or as an antioxidant. Furthermore, it favors the physiological responses and eases the neurite growth efficiency. Additionally, we found out that the conversion of glycine-based acryloyl monomers into their corresponding polymer modulates the mechanical performance, mimics the cellular microenvironment, and accelerates the self-healing capability due to the responsive behavior towards reactive oxygen species (ROS). Thus, the p(NAG-b-A) hydrogel could be a potential candidate to induce neuronal regeneration since it provides a physical cue and significantly boosts neurite outgrowth and also maintains the microtubule integrity in neuronal cells.


Assuntos
Hidrogéis , Neuritos , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Neuritos/metabolismo , Acrilamida , Estresse Oxidativo , Microambiente Celular , Polímeros/farmacologia , Polímeros/metabolismo , Glicina/farmacologia
6.
ACS Biomater Sci Eng ; 8(8): 3608-3622, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35892286

RESUMO

In this work, a series of mesoporous carbon nanocapsules (mCNS) of size below 10 nm have been prepared from Azadirachta indica seeds with a very easy and cost-effective approach. These nanocapsules can emit red and green light and are effective for cell imaging. Further, these carbon nanocapsules are biocompatible toward the normal healthy cells, however, they possess modest cytotoxicity against the MCF-7 (human breast cancer) and triple-negative breast cancer (TNBC) (MDA- MB-231 breast cancer cells), and the rate of killing cancer cells strongly depends on the dose of mCNCs. Further, the mitochondrial membrane potential and apoptosis assay were performed to analyze the therapeutic significance of these nanocapsules to kill breast cancer. Results showed that these carbon nanocapsules can depolarize the mitochondrial membrane potential alone (without using conventional drugs) and can change the physiological parameters and cellular metabolic energy of the cancer cells and kill them. The apoptosis results confirmed the death of breast cancer cells in the form of apoptosis and necrosis. Moreover, the results suggested that the porous carbon nanocapsules (mCNCs) reported herein can be used as a potential candidate and useful for the theranostic applications such as for cancer cell detection and therapy without using any conventional drugs.


Assuntos
Azadirachta , Nanocápsulas , Neoplasias de Mama Triplo Negativas , Carbono/farmacologia , Carbono/uso terapêutico , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial , Nanocápsulas/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
7.
ACS Omega ; 6(47): 31615-31631, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34869986

RESUMO

In this work, mesoporous (pore size below 4 nm) composite nanoparticles of ZnO-Ag2O/Ag, ZnO-CuO, and ZnO-SnO2 of size d ≤ 10 nm (dia.) have been synthesized through the in situ solvochemical reduction method using NaBH4. These composite nanoparticles exhibited excellent killing efficacy against Gram-positive/negative bacterial and fungal strains even at a very low dose of 0.010 µg/mL. Additionally, by applying the in silico docking approach, the nanoparticles and microorganism-specific targeted proteins and their interactions have been identified to explain the best anti-bacterial/anti-fungal activities of these composites. For this purpose, the virulence and resistance causing target proteins such as PqsR, RstA, FosA, and Hsp90 of Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, and Candida albicans have been identified to find out the best inhibitory action mechanisms involved. From the in vitro study, it is revealed that all the composite nanoparticle types used here can act as potent antimicrobial components. All the composite nanoparticles have exhibited excellent inhibition against the microorganisms compared to their constituent single metal or metal oxide nanoparticles. Among the nanoparticle types, the ZnO-Ag2O/Ag composite nanoparticles exhibited the best inhibition activity compared to the other reported nanoparticles. The microorganisms which are associated with severe infections lead to the multidrug resistance and have become a huge concern in the healthcare sector. Conventional organic antibiotics are less stable at a higher temperature. Therefore, based on the current demands, this work has been focused on designing inorganic antibiotics which possess stability even under harsh conditions. In this direction, our developed composite nanoparticles were explored for potential uses in the healthcare technology, and they may solve many problems in global emergency and epidemics caused by the microorganisms.

8.
ACS Appl Bio Mater ; 4(10): 7342-7365, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35006689

RESUMO

Cerebral malaria occurs due to Plasmodium falciparum infection, which causes 228 million infections and 450,000 deaths worldwide every year. African people are mostly affected with nearly 91% cases, of which 86% are pregnant women and infants. India and Brazil are the other two countries severely suffering from malaria endemicity. Commonly used drugs have severe side effects, and unfortunately no suitable vaccine is available in the market today. In this line, this review is focused on polymeric nanomaterials and nanocapsules that can be used for the development of effective diagnostic strategies, nanomedicines, and vaccines in the management of cerebral malaria. Further, this review will help scientists and medical professionals by updating the status on the development stages of polymeric nanoparticle based diagnostics, nanomedicines, and vaccines and strategies to eradicate cerebral malaria. In addition to this, the predominant focus of this review is antimalarial agents based on polymer nanomedicines that are currently in the preclinical and clinical trial stages, and potential developments are suggested as well. This review further will have an important social and commercial impact worldwide for the development of polymeric nanomedicines and strategies for the treatment of cerebral malaria.


Assuntos
Vacinas Antimaláricas , Malária Cerebral , Nanopartículas , Feminino , Humanos , Lactente , Vacinas Antimaláricas/uso terapêutico , Malária Cerebral/diagnóstico , Nanomedicina , Polímeros/uso terapêutico , Gravidez
9.
RSC Adv ; 12(2): 1105-1120, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35425144

RESUMO

Invasive bacterial and fungal infections have notably increased the burden on the health care system and especially in immune compromised patients. These invasive bacterial and fungal species mimic and interact with the host extracellular matrix and increase the adhesion and internalization into the host system. Further, increased resistance of traditional antibiotics/antifungal drugs led to the demand for other therapeutics and preventive measures. Presently, metallic nanoparticles have wide applications in health care sectors. The present study has been designed to evaluate the advantage of Ag/Sn-SnO2 composite nanoparticles over the single oxide/metallic nanoparticles. By using in silico molecular docking approaches, herein we have evaluated the effects of Ag/Sn-SnO2 nanoparticles on adhesion and invasion responsible molecular targets such as LpfD (E. coli), Als3 (C. albicans) and on virulence/resistance causing PqsR (P. aeruginosa), RstA (Bmfr) (A. baumannii), FoxA (K. pneumonia), Hsp90 and Cyp51 (C. albicans). These Ag/Sn-SnO2 nanoparticles exhibited higher antimicrobial activities, especially against the C. albicans, which are the highest ever reported results. Further, Ag/Sn-SnO2 NPs exhibited interaction with the heme proionate residues such as Lys143, His468, Tyr132, Arg381, Phe105, Gly465, Gly464, Ile471 and Ile304 by forming hydrogen bonds with the Arg 381 residue of lanosterol 1 4α-demethylase and increased the inhibition of the Candida strains. Additionally, the Ag/Sn-SnO2 nanoparticles exhibited extraordinary inhibitory properties by targeting different proteins of bacteria and Candida species followed by several molecular pathways which indicated that it can be used to eliminate the resistance to traditional antibiotics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...