Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychopharmacology (Berl) ; 241(6): 1265-1275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38396195

RESUMO

There is a significant co-occurrence of opioid use disorder (OUD) and post-traumatic stress disorder (PTSD) in clinical populations. However, the neurobiological mechanisms linking chronic opioid use, withdrawal, and the development of PTSD are poorly understood. Our previous research has shown that proinflammatory cytokines, expressed primarily by astrocytes in the dorsal hippocampus (DH), play a role in the development of heroin withdrawal-enhanced fear learning (HW-EFL), an animal model of PTSD-OUD comorbidity. Given the role of astrocytes in memory, fear learning, and opioid use, our experiments aimed to investigate their involvement in HW-EFL. Experiment 1 examined the effect of withdrawal from chronic heroin administration on GFAP surface area and volume, and identified increased surface area and volume of GFAP immunoreactivity in the dentate gyrus (DG) following 24-hour heroin withdrawal. Experiment 2 examined astrocyte morphology and synaptic interactions at the 24-hour withdrawal timepoint using an astroglial membrane-bound GFP (AAV5-GfaABC1D-lck-GFP). Although we did not detect significant changes in surface area and volume of GfaABC1D-Lck-GFP labelled astrocytes, we did observe a significant increase in the colocalization of astrocyte membranes with PSD-95 (postsynaptic density protein 95) in the DG. Experiment 3 tested if stimulating astroglial Gi signaling in the DH alters HW-EFL, and our results demonstrate this manipulation attenuates HW-EFL. Collectively, these findings contribute to our current understanding of the effects of heroin withdrawal on astrocytes and support the involvement of astrocytes in the comorbid relationship between opioid use and anxiety disorders.


Assuntos
Astrócitos , Medo , Heroína , Hipocampo , Síndrome de Abstinência a Substâncias , Astrócitos/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Heroína/administração & dosagem , Masculino , Hipocampo/metabolismo , Medo/fisiologia , Transtornos de Estresse Pós-Traumáticos/metabolismo , Aprendizagem/fisiologia , Modelos Animais de Doenças , Dependência de Heroína/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos
2.
J Undergrad Neurosci Educ ; 21(2): A108-A116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588653

RESUMO

Case studies are a valuable teaching tool to engage students in course content using real-world scenarios. As part of the High-throughput Discovery Science & Inquiry-based Case Studies for Today's Students (HITS) Research Coordination Network (RCN), our team has created the Sleepy Mice Case Study for students to engage with RStudio and the Allen Institute for Brain Science's open access high-throughput sleep dataset on mice. Sleep is important for health, a familiar concern to college students, and was a basis for this case study. In this case, students completed an initial homework assignment, in-class work, and a final take-home application assignment. The case study was implemented in synchronous and asynchronous Introductory Neuroscience courses, a Biopsychology course, and a Human Anatomy and Physiology course, reflecting its versatility. The case can be used to teach course-specific learning objectives such as sleep-related content and/or science data processing skills. The case study was successful as shown by gains in student scores and confidence in achieving learning objectives. Most students reported enjoying learning about sleep deprivation course content using the case study. Best practices based on instructor experiences in implementation are also included to facilitate future use so that the Sleepy Mice Case Study can be used to teach content and/or research-related skills in various courses and modalities.

3.
Psychopharmacology (Berl) ; 240(2): 347-359, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36633660

RESUMO

Post-traumatic stress disorder (PTSD) and opioid use disorder (OUD) are comorbid in clinical populations. However, both pre-clinical and clinical studies of these co-occurring disorders have disproportionately represented male subjects, limiting the applicability of these findings. Our previous work has identified chronic escalating heroin administration and withdrawal can produce enhanced fear learning. This behavior is associated with an increase in dorsal hippocampal (DH) interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and glial fibrillary acidic protein (GFAP) immunoreactivity. Further, we have shown that these increases in IL-1ß and TNF-α are mechanistically necessary for the development of enhanced fear learning. Although these are exciting findings, this paradigm has only been studied in males. The current studies aim to examine sex differences in the behavioral and neuroimmune effects of chronic heroin withdrawal and future enhanced fear learning. In turn, we determined that chronic escalating heroin administration can produce withdrawal in female rats comparable to male rats. Subsequently, we examined the consequence of heroin withdrawal on future enhanced fear learning and IL-1ß, TNF-α, and GFAP immunoreactivity. Strikingly, we identified sex differences in these neuroimmune measures, as chronic heroin administration and withdrawal does not produce enhanced fear learning or immunoreactivity changes in females. Moreover, we determined whether heroin withdrawal produces short-term and long-term anxiety behaviors in both female and males. Collectively, these novel experiments are the first to test whether heroin withdrawal can sensitize future fear learning, produce neurobiological changes, and cause short-term and long-term anxiety behaviors in female rats.


Assuntos
Heroína , Fator de Necrose Tumoral alfa , Feminino , Masculino , Ratos , Animais , Caracteres Sexuais , Ratos Sprague-Dawley , Ansiedade , Entorpecentes/farmacologia , Medo
4.
Alcohol Clin Exp Res ; 46(12): 2177-2190, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36349797

RESUMO

BACKGROUND: Alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD) are highly comorbid, yet there is a lack of preclinical research investigating how prior ethanol (EtOH) dependence influences the development of a PTSD-like phenotype. Furthermore, the neuroimmune system has been implicated in the development of both AUD and PTSD, but the extent of glial involvement in this context remains unclear. A rodent model was developed to address this gap in the literature. METHODS: We used a 15-day exposure to the 5% w/v EtOH low-fat Lieber-DeCarli liquid diet in combination with the stress-enhanced fear learning (SEFL) paradigm to investigate the effects of chronic EtOH consumption on the development of a PTSD-like phenotype. Next, we used a reverse transcription quantitative real-time polymerase chain reaction to quantify mRNA expression of glial cell markers GFAP (astrocytes) and CD68 (microglia) following severe footshock stress in EtOH-withdrawn rats. Finally, we tested the functional contribution of dorsal hippocampal (DH) astrocytes in the development of SEFL in EtOH-dependent rats using astrocyte-specific Gi designer receptors exclusively activated by designer drugs (Gi -DREADD). RESULTS: Results demonstrate that chronic EtOH consumption and withdrawal exacerbate future SEFL. Additionally, we found significantly increased GFAP mRNA expression in the dorsal and ventral hippocampus and amygdalar complex following the severe stressor in EtOH-withdrawn animals. Finally, the stimulation of the astroglial Gi -DREADD during EtOH withdrawal prevented the EtOH-induced enhancement of SEFL. CONCLUSIONS: Collectively, results indicate that prior EtOH dependence and withdrawal combined with a severe stressor potentiate future enhanced fear learning. Furthermore, DH astrocytes significantly contribute to this change in behavior. Overall, these studies provide insight into the comorbidity of AUD and PTSD and the potential neurobiological mechanisms behind increased susceptibility to a PTSD-like phenotype in individuals with AUD.


Assuntos
Alcoolismo , Astrócitos , Animais , Ratos , Astrócitos/metabolismo , Medo , Hipocampo/metabolismo , Etanol/farmacologia , Etanol/metabolismo , RNA Mensageiro/metabolismo
5.
Brain Behav Immun Health ; 26: 100542, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36388136

RESUMO

Post-traumatic stress disorder (PTSD) is a devastating disorder that involves maladaptive changes in immune status. Using the stress-enhanced fear learning (SEFL) paradigm, an animal model of PTSD, our laboratory has demonstrated increased pro-inflammatory cytokine immunoreactivity in the hippocampus following severe stress. Recent clinical trials have demonstrated 3,4-methylenedioxymethamphetamine (MDMA)-assisted psychotherapy as an effective novel treatment for PTSD. Interestingly, MDMA has been shown to have an immunosuppressive effect in both pre-clinical and clinical studies. Therefore, we predict MDMA administration may attenuate SEFL, in part, due to an immunosuppressive mechanism. The current studies test the hypothesis that MDMA is capable of attenuating SEFL and inducing alterations in expression of TNF-α, IL-1ß, glial fibrillary acidic protein (GFAP), an astrocyte specific marker, and ionized calcium-binding adapter molecule -1 (IBA-1), a microglial specific marker, in the dorsal hippocampus (DH) following a severe stressor in male animals. To this end, experiment 1 determined the effect of MDMA administration 0, 24, and 48 h following a severe foot shock stressor on SEFL. We identified that MDMA administration significantly attenuated SEFL. Subsequently, experiment 2 determined the effect of MDMA administration following a severe stressor on the expression of TNF-α, IL-1ß, GFAP, and IBA-1 in the DH. We found that MDMA administration significantly attenuated stress-induced IL-1ß and stress-reduced IBA-1 but had no effect on TNF-α or GFAP. Overall, these results support the hypothesis that MDMA blocks SEFL through an immunosuppressive mechanism and supports the use of MDMA as a potential therapeutic agent for those experiencing this disorder. Together, these experiments are the first to examine the effect of MDMA in the SEFL model and these data contribute significantly towards the clinical PTSD findings.

6.
Mol Neurobiol ; 58(6): 2963-2973, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33580871

RESUMO

There is significant comorbidity of opioid use disorder (OUD) and post-traumatic stress disorder (PTSD) in clinical populations. However, the neurobiological mechanisms underlying the relationship between chronic opioid use and withdrawal and development of PTSD are poorly understood. Our previous work identified that chronic escalating heroin administration and withdrawal can produce enhanced fear learning, an animal model of hyperarousal, and is associated with an increase in dorsal hippocampal (DH) interleukin-1ß (IL-1ß). However, other cytokines, such as TNF-α, work synergistically with IL-1ß and may have a role in the development of enhanced fear learning. Based on both translational rodent and clinical studies, TNF-α has been implicated in hyperarousal states of PTSD, and has an established role in hippocampal-dependent learning and memory. The first set of experiments tested the hypothesis that chronic heroin administration followed by withdrawal is capable of inducing alterations in DH TNF-α expression. The second set of experiments examined whether DH TNF-α expression is functionally relevant to the development of enhanced fear learning. We identified an increase of TNF-α immunoreactivity and positive cells at 0, 24, and 48 h into withdrawal in the dentate gyrus DH subregion. Interestingly, intra-DH infusions of etanercept (TNF-α inhibitor) 0, 24, and 48 h into heroin withdrawal prevented the development of enhanced fear learning and mitigated withdrawal-induced weight loss. Overall, these findings provide insight into the role of TNF-α in opioid withdrawal and the development of anxiety disorders such as PTSD.


Assuntos
Medo , Heroína/efeitos adversos , Hipocampo/metabolismo , Aprendizagem , Transdução de Sinais , Síndrome de Abstinência a Substâncias/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Redução de Peso , Animais , Etanercepte/farmacologia , Heroína/administração & dosagem , Masculino , Ratos Sprague-Dawley
7.
Psychopharmacology (Berl) ; 237(12): 3653-3664, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32860071

RESUMO

Converging evidence suggests opioid abuse can increase the incidence and severity of post-traumatic stress disorder (PTSD) in clinical populations. Interestingly, opioid withdrawal alone can produce symptoms similar to those of PTSD. Despite this association, the neural mechanisms underlying the relationship of opioid abuse, withdrawal, and PTSD is poorly understood. Our laboratory has investigated the neurobiological underpinnings of stress-enhanced fear learning (SEFL), an animal model of PTSD-like symptoms. We have previously shown that, in SEFL, a severe footshock induces an increase in dorsal hippocampal (DH) interleukin-1ß (IL-1ß), and subsequent fear learning is blocked by DH IL-1 receptor antagonism (IL-1RA). Given that opioids and stress engage similar neuroimmune mechanisms, the present experiments investigate whether the same mechanisms drive heroin withdrawal to induce a PTSD-like phenotype. First, we tested the effect of a chronic escalating heroin dose and withdrawal regimen on fear learning and found it produces enhanced future fear learning. Heroin withdrawal also induces a time-dependent, region-specific increase in IL-1ß and glial fibrillary acidic protein (GFAP) immunoreactivity within the dentate gyrus of the DH. IL-1ß was significantly colocalized with GFAP, indicating astrocytes may be involved in increased IL-1ß. Moreover, intra-DH infusions of IL-1RA 0, 24, and 48 h into heroin withdrawal prevents the development of enhanced fear learning but does not alter withdrawal-induced weight loss. Collectively, our data suggests heroin withdrawal is sufficient to produce enhanced fear learning, astrocytes may play a role in heroin withdrawal-induced IL-1ß, and DH IL-1 signaling during withdrawal mediates the development of heroin withdrawal-enhanced fear learning.


Assuntos
Medo/fisiologia , Heroína/efeitos adversos , Hipocampo/metabolismo , Interleucina-1beta/biossíntese , Aprendizagem/fisiologia , Síndrome de Abstinência a Substâncias/metabolismo , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/efeitos adversos , Animais , Medo/efeitos dos fármacos , Medo/psicologia , Heroína/administração & dosagem , Hipocampo/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Síndrome de Abstinência a Substâncias/psicologia
8.
Brain Behav Immun ; 89: 414-422, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717403

RESUMO

The physiological and motivational effects of heroin and other abused drugs become associated with environmental (contextual) stimuli during repeated drug use. As a result, these contextual stimuli gain the ability to elicit drug-like conditioned effects. For example, after context-heroin pairings, exposure to the heroin-paired context alone produces similar effects on peripheral immune function as heroin itself. Conditioned immune effects can significantly exacerbate the adverse health consequences of heroin use. Our laboratory has shown that exposure to a heroin-paired context suppresses lipopolysaccharide (LPS)-induced splenic nitric oxide (NO) production in male rats, and this effect is mediated in part by the dorsal hippocampus (dHpc). However, specific dHpc output regions, whose efferents might mediate conditioned immune effects, have not been identified, nor has the contribution of ventral hippocampus (vHpc) been investigated. Here, we evaluated the role of CaMKIIα-expressing neurons in the dHpc and vHpc main output regions by expressing Gi-coupled designer receptors exclusively activated by designer drugs (DREADDs) under a CaMKIIα promoter in the dorsal subiculum and CA1 (dSub, dCA1) or ventral subiculum and CA1 (vSub, vCA1). After context-heroin conditioning, clozapine-N-oxide (CNO, DREADD agonist) or vehicle was administered systemically prior to heroin-paired context (or home-cage control) exposure and LPS immune challenge. Chemogenetic inhibition of CaMKIIα-expressing neurons in dHpc, but not vHpc, output regions attenuated the expression of conditioned splenic NO suppression. These results establish that the main dHpc output regions, the dSub and dCA1, are critical for this context-heroin conditioned immune effect.


Assuntos
Heroína , Hipocampo , Animais , Condicionamento Clássico , Masculino , Neurônios , Ratos
9.
Brain Behav Immun ; 73: 698-707, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30075289

RESUMO

Repeated pairings of heroin and a context results in Pavlovian associations which manifest as heroin-conditioned appetitive responses and peripheral immunomodulation upon re-exposure to heroin-paired conditioned stimuli (CS). The dorsal hippocampus (DH) plays a key role in the neurocircuitry governing these context-heroin associations. Within the DH, expression of the pro-inflammatory cytokine interleukin-1ß (IL-1ß) is required for heroin-conditioned peripheral immunomodulation to occur. However, the role of signaling via IL-1 receptor type 1 (IL-1R1) has not been examined. Furthermore, it has not been evaluated whether the involvement of IL-1 in associative learning extends to classically conditioned appetitive behaviors, such as conditioned place preference (CPP). The first set of experiments investigated whether DH IL-1R1 signaling during CS re-exposure modulates heroin-conditioned immunomodulation and heroin-CPP. The second set of experiments employed chemogenetic techniques to examine whether DH astroglial signaling during CS re-exposure alters the same Pavlovian responses. This line of investigation is based on previous research indicating that astrocytes support hippocampal-dependent learning and memory through the expression of IL-1ß protein and IL-1R1. Interestingly, IL-1R1 antagonism disrupted heroin-conditioned suppression of peripheral immune parameters but failed to alter heroin-CPP. Similarly, chemogenetic stimulation of Gi-signaling in DH astrocytes attenuated heroin-conditioned peripheral immunomodulation but failed to alter heroin-CPP. Collectively our data show that both IL-1R1 stimulation and astrocyte signaling in the DH are critically involved in the expression of heroin-conditioned immunomodulation but not heroin-CPP. As such these findings strongly suggest hippocampal neuroimmune signaling differentially regulates Pavlovian immunomodulatory and appetitive behaviors.


Assuntos
Heroína/efeitos adversos , Imunomodulação/efeitos dos fármacos , Receptores de Interleucina-1/efeitos dos fármacos , Animais , Astrócitos/metabolismo , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Heroína/metabolismo , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Masculino , Entorpecentes/efeitos adversos , Entorpecentes/metabolismo , Ratos , Ratos Endogâmicos Lew , Transdução de Sinais/efeitos dos fármacos , Lobo Temporal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...