Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 276(27): 24511-8, 2001 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-11342544

RESUMO

Pyrophosphatase (PPase) from Bacillus subtilis has recently been found to be the first example of a family II soluble PPase with a unique requirement for Mn2+. In the present work, we cloned and overexpressed in Escherichia coli putative genes for two more family II PPases (from Streptococcus mutans and Streptococcus gordonii), isolated the recombinant proteins, and showed them to be highly specific and active PPases (catalytic constants of 1700-3300 s(-)1 at 25 degrees C in comparison with 200-400 s(-)1 for family I). All three family II PPases were found to be dimeric manganese metalloenzymes, dissociating into much less active monomers upon removal of Mn2+. The dimers were found to have one high affinity manganese-specific site (K(d) of 0.2-3 nm for Mn2+ and 10-80 microm for Mg2+) and two or three moderate affinity sites (K(d) approximately 1 mm for both cations) per subunit. Mn2+ binding to the high affinity site, which occurs with a half-time of less than 10 s at 1.5 mm Mn2+, dramatically shifts the monomer <--> dimer equilibrium in the direction of the dimer, further activates the dimer, and allows substantial activity (60-180 s(-)1) against calcium pyrophosphate, a potent inhibitor of family I PPases.


Assuntos
Bacillus subtilis/enzimologia , Pirofosfatases/química , Streptococcus/enzimologia , Pirofosfato de Cálcio/metabolismo , Clonagem Molecular , Dimerização , Ativação Enzimática , Escherichia coli , Cinética , Magnésio/metabolismo , Manganês/metabolismo , Conformação Proteica , Pirofosfatases/genética , Pirofosfatases/metabolismo , Solubilidade , Streptococcus mutans/enzimologia
2.
Biochemistry (Mosc) ; 65(3): 388-92, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10739482

RESUMO

Three Gln-80 residues belonging to different subunits of homohexameric Escherichia coli pyrophosphatase are separated by only one water molecule to which they are hydrogen bonded. Substitution of Glu for Gln-80 stabilizes quaternary structure of the enzyme but has only a small effect on enzyme activity. The substitution stimulates Mg2+ binding and changes the appearance of the Mg2+ concentration dependence of the rate constant for the trimer --> hexamer transition. These data suggest that a new Mg2+ binding site is formed in the intersubunit contact region as a result of the substitution. Three-dimensional modeling of the mutated protein showed that a chelate complex might form involving two of the three Glu-80 residues.


Assuntos
Escherichia coli/enzimologia , Magnésio/metabolismo , Pirofosfatases/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Difosfatos/metabolismo , Escherichia coli/genética , Glutamina/metabolismo , Pirofosfatase Inorgânica , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Polímeros , Engenharia de Proteínas , Pirofosfatases/química , Pirofosfatases/genética
3.
J Biol Chem ; 274(48): 33898-904, 1999 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-10567351

RESUMO

A homohexameric molecule of Escherichia coli pyrophosphatase is arranged as a dimer of trimers, with an active site present in each of its six monomers. Earlier we reported that substitution of His(136) and His(140) in the intertrimeric subunit interface splits the molecule into active trimers (Velichko, I. S., Mikalahti, K., Kasho, V. N., Dudarenkov, V. Y., Hyytiä, T., Goldman, A., Cooperman, B. S., Lahti, R., and Baykov, A. A. (1998) Biochemistry 37, 734-740). Here we demonstrate that additional substitutions of Tyr(77) and Gln(80) in the intratrimeric interface give rise to moderately active dimers or virtually inactive monomers, depending on pH, temperature, and Mg(2+) concentration. Successive dissociation of the hexamer into trimers, dimers, and monomers progressively decreases the catalytic efficiency (by 10(6)-fold in total), and conversion of a trimer into dimer decreases the affinity of one of the essential Mg(2+)-binding sites/monomer. Disruptive substitutions predominantly in the intratrimeric interface stabilize the intertrimeric interface and vice versa, suggesting that the optimal intratrimeric interaction is not compatible with the optimal intertrimeric interaction. Because of the resulting "conformational strain," hexameric wild-type structure appears to be preformed to bind substrate. A hexameric triple variant substituted at Tyr(77), Gln(80), and His(136) exhibits positive cooperativity in catalysis, consistent with this model.


Assuntos
Escherichia coli/enzimologia , Pirofosfatases/metabolismo , Substituição de Aminoácidos , Ácido Aspártico/genética , Catálise , Cristalografia por Raios X , Dimerização , Estabilidade Enzimática , Ácido Glutâmico/genética , Glutamina/genética , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Compostos de Magnésio/farmacologia , Estrutura Quaternária de Proteína/efeitos dos fármacos , Pirofosfatases/química , Pirofosfatases/genética , Especificidade por Substrato , Temperatura , Tirosina/genética
4.
FEBS Lett ; 454(1-2): 75-80, 1999 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-10413099

RESUMO

Based on the primary structure, soluble inorganic pyrophosphatases can be divided into two families which exhibit no sequence similarity to each other. Family I, comprising most of the known pyrophosphatase sequences, can be further divided into prokaryotic, plant and animal/fungal pyrophosphatases. Interestingly, plant pyrophosphatases bear a closer similarity to prokaryotic than to animal/fungal pyrophosphatases. Only 17 residues are conserved in all 37 pyrophosphatases of family I and remarkably, 15 of these residues are located at the active site. Subunit interface residues are conserved in animal/fungal but not in prokaryotic pyrophosphatases.


Assuntos
Evolução Molecular , Pirofosfatases/genética , Sequência de Aminoácidos , Animais , Humanos , Pirofosfatase Inorgânica , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA