Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 215: 115740, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567319

RESUMO

Liver fibrosis is an excessive production, aberrant deposition, and deficit degradation of extracellular matrix (ECM). Patients with unresolved fibrosis ultimately undergo end-stage liver diseases. To date, the effective and safe strategy to cease fibrosis progression remains an unmet clinical need. Since collagens are the most abundant ECM protein which play an essential role in fibrogenesis, the suitable regulation of collagen homeostasis could be an effective strategy for the treatment of liver fibrosis. Therefore, this review provides a brief overview on the dysregulation of ECM homeostasis, focusing on collagens, in the pathogenesis of liver fibrosis. Most importantly, promising therapeutic mechanisms related to biosynthesis, deposition and extracellular interactions, and degradation of collagens, together with preclinical and clinical antifibrotic evidence of drugs affecting each target are orderly criticized. In addition, challenges for targeting collagen homeostasis in the treatment of liver fibrosis are discussed.


Assuntos
Colágeno , Cirrose Hepática , Humanos , Cirrose Hepática/metabolismo , Colágeno/metabolismo , Fibrose , Matriz Extracelular/metabolismo , Homeostase , Fígado/metabolismo
2.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629047

RESUMO

Current drugs for treating heart failure (HF), for example, angiotensin II receptor blockers and ß-blockers, possess specific target molecules involved in the regulation of the cardiac circulatory system. However, most clinically approved drugs are effective in the treatment of HF with reduced ejection fraction (HFrEF). Novel drug classes, including angiotensin receptor blocker/neprilysin inhibitor (ARNI), sodium-glucose co-transporter-2 (SGLT2) inhibitor, hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, soluble guanylyl cyclase (sGC) stimulator/activator, and cardiac myosin activator, have recently been introduced for HF intervention based on their proposed novel mechanisms. SGLT2 inhibitors have been shown to be effective not only for HFrEF but also for HF with preserved ejection fraction (HFpEF). In the myocardium, excess cyclic adenosine monophosphate (cAMP) stimulation has detrimental effects on HFrEF, whereas cyclic guanosine monophosphate (cGMP) signaling inhibits cAMP-mediated responses. Thus, molecules participating in cGMP signaling are promising targets of novel drugs for HF. In this review, we summarize molecular pathways of cGMP signaling and clinical trials of emerging drug classes targeting cGMP signaling in the treatment of HF.


Assuntos
Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico , Coração , Miocárdio , Antagonistas de Receptores de Angiotensina , Bloqueadores dos Canais de Cálcio , AMP Cíclico , GMP Cíclico , Vasodilatadores
3.
ACS Pharmacol Transl Sci ; 6(7): 970-981, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37470020

RESUMO

Anticoagulants are the mainstay for the prevention and treatment of thrombosis. However, bleeding complications remain a primary concern. Recent advances in understanding the contribution of activated factor XI (FXIa) in arterial thrombosis with a limited impact on hemostasis have led to the development of several FXIa-targeting modalities. Injectable agents including monoclonal antibodies and antisense oligonucleotides against FXIa have been primarily studied in venous thrombosis. The orally active small molecules that specifically inhibit the active site of FXIa are currently being investigated for their antithrombotic activity in both arteries and veins. This review focuses on a discussion of the potential clinical benefits of small molecule FXIa inhibitors, mainly asundexian and milvexian, in arterial thrombosis based on their pharmacological profiles and the compelling results of phase 2 clinical studies. The preclinical and epidemiological basis for the impact of FXIa in hemostasis and arterial thrombosis is also addressed. In recent clinical study results, asundexian appears to reduce ischemic events in patients with myocardial infarction and minor-to-moderate stroke, whereas milvexian possibly provides benefits in patients with minor stroke or high-risk transient ischemic attack (TIA). In addition, asundexian and milvexian had a minor impact on hemostasis even in combination with dual-antiplatelet therapy. Other orally active FXIa inhibitors also produce antithrombotic activity in vivo with low bleeding risk. Therefore, FXIa inhibitors might represent a new class of direct-acting oral anticoagulants (DOACs) for the treatment of thrombosis, although the explicit clinical positions of asundexian and milvexian in patients with ischemic stroke, high-risk TIA, and coronary artery disease require confirmation from the outcomes of ongoing phase 3 trials.

4.
Eur J Pharmacol ; 954: 175896, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37391007

RESUMO

Mitochondrial dysfunction under diabetic condition leads to the development and progression of neurodegenerative complications. Recently, the beneficial effects of glucagon-like peptide-1 (GLP-1) receptor agonists on diabetic neuropathies have been widely recognized. However, molecular mechanisms underlying the neuroprotective effects of GLP-1 receptor agonists against high glucose (HG)-induced neuronal damages is not completely elucidated. Here, we investigated the underlying mechanisms of GLP-1 receptor agonist treatment against oxidative stress, mitochondrial dysfunction, and neuronal damages under HG conditions mimicking a diabetic hyperglycemic state in SH-SY5Y neuroblastoma cells. We revealed that treatment with exendin-4, a GLP-1 receptor agonist, not only increased the expression of survival markers, phospho-Akt/Akt and Bcl-2, but also decreased the expression of pro-apoptotic marker, Bax, and reduced the levels of reactive oxygen species (ROS) defense markers (catalase, SOD-2, and HO-1) under HG conditions. The expressions of mitochondrial function associated genes, MCU and UCP3, and mitochondrial fission genes, DRP1 and FIS1, were decreased by exendin-4 compared to non-treated levels, while the protein expression levels of mitochondrial homeostasis regulators, Parkin and PINK1, were enhanced. In addition, blockade of Epac and Akt activities was able to antagonize these neuroprotective effects of exendin-4. Collectively, we demonstrated that stimulation of GLP-1 receptor propagates a neuroprotective cascade against the oxidative stress and mitochondrial dysfunction as well as augments survival through the Epac/Akt-dependent pathway. Therefore, the revealed mechanisms underlying GLP-1 receptor pathway by preserving mitochondrial homeostasis would be a therapeutic candidate to alleviate neuronal dysfunctions and delay the progression of diabetic neuropathies.


Assuntos
Neuropatias Diabéticas , Neuroblastoma , Fármacos Neuroprotetores , Humanos , Exenatida/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Apoptose , Neuroblastoma/metabolismo , Estresse Oxidativo , Mitocôndrias/metabolismo , Glucose/metabolismo
5.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37375783

RESUMO

Diabetes is one of the chronic metabolic disorders which poses a multitude of life-debilitating challenges, including cardiac muscle impairment, which eventually results in heart failure. The incretin hormone glucagon-like peptide-1 (GLP-1) has gained distinct recognition in reinstating glucose homeostasis in diabetes, while it is now largely accepted that it has an array of biological effects in the body. Several lines of evidence have revealed that GLP-1 and its analogs possess cardioprotective effects by various mechanisms related to cardiac contractility, myocardial glucose uptake, cardiac oxidative stress and ischemia/reperfusion injury, and mitochondrial homeostasis. Upon binding to GLP-1 receptor (GLP-1R), GLP-1 and its analogs exert their effects via adenylyl cyclase-mediated cAMP elevation and subsequent activation of cAMP-dependent protein kinase(s) which stimulates the insulin release in conjunction with enhanced Ca2+ and ATP levels. Recent findings have suggested additional downstream molecular pathways stirred by long-term exposure of GLP-1 analogs, which pave the way for the development of potential therapeutic molecules with longer lasting beneficial effects against diabetic cardiomyopathies. This review provides a comprehensive overview of the recent advances in the understanding of the GLP-1R-dependent and -independent actions of GLP-1 and its analogs in the protection against cardiomyopathies.

6.
Eur J Pharmacol ; 951: 175780, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209939

RESUMO

Angiotensin II receptors are members of G protein-coupled receptor superfamily that manifest biased signals toward G protein- and ß-arrestin-dependent pathways. However, the role of angiotensin II receptor-biased ligands and the mechanisms underlying myofibroblast differentiation in human cardiac fibroblasts have not been fully elucidated. Our results demonstrated that antagonism of angiotensin II type 1 receptor (AT1 receptor) and blockade of Gαq protein suppressed angiotensin II (Ang II)-induced fibroblast proliferation, overexpression of collagen I and α-smooth muscle actin (α-SMA), and stress fibre formation, indicating the AT1 receptor/Gαq axis is necessary for fibrogenic effects of Ang II. Stimulation of AT1 receptors by their Gαq-biased ligand (TRV120055), but not ß-arrestin-biased ligand (TRV120027), substantially exerted fibrogenic effects at a level similar to that of Ang II, suggesting that AT1 receptor induced cardiac fibrosis in a Gαq-dependent and ß-arrestin-independent manner. Valsartan prevented TRV120055-mediated fibroblast activation. TRV120055 mediated the upregulation of transforming growth factor-beta1 (TGF-ß1) through the AT1 receptor/Gαq cascade. In addition, Gαq protein and TGF-ß1 were necessary for ERK1/2 activation induced by Ang II and TRV120055. Collectively, TGF-ß1 and ERK1/2 are downstream effectors of the Gαq-biased ligand of AT1 receptor for the induction of cardiac fibrosis.


Assuntos
Receptor Tipo 1 de Angiotensina , Fator de Crescimento Transformador beta1 , Ratos , Animais , Humanos , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Miofibroblastos/metabolismo , Ligantes , Ratos Sprague-Dawley , Proteínas de Ligação ao GTP/metabolismo , Fibroblastos/metabolismo , Fibrose , Arrestinas/metabolismo
7.
Int J Mol Sci ; 24(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37108136

RESUMO

Angiotensin II (Ang II) upregulates transforming growth factor-beta1 (TGF-ß1) and endothelin-1 (ET-1) in various types of cells, and all of them act as profibrotic mediators. However, the signal transduction of angiotensin II receptor (ATR) for upregulation of TGF-ß1 and ET-1, and their effectors that play an essential role in myofibroblast differentiation, are not fully understood. Therefore, we investigated the ATR networking with TGF-ß1 and ET-1 and identified the signal transduction of these mediators by measuring the mRNA expression of alpha-smooth muscle actin (α-SMA) and collagen I using qRT-PCR. Myofibroblast phenotypes were monitored by α-SMA and stress fiber formation with fluorescence microscopy. Our findings suggested that Ang II induced collagen I and α-SMA synthesis and stress fiber formation through the AT1R/Gαq axis in adult human cardiac fibroblasts (HCFs). Following AT1R stimulation, Gαq protein, not Gßγ subunit, was required for upregulation of TGF-ß1 and ET-1. Moreover, dual inhibition of TGF-ß and ET-1 signaling completely inhibited Ang II-induced myofibroblast differentiation. The AT1R/Gαq cascade transduced signals to TGF-ß1, which in turn upregulated ET-1 via the Smad- and ERK1/2-dependent pathways. ET-1 consecutively bound to and activated endothelin receptor type A (ETAR), leading to increases in collagen I and α-SMA synthesis and stress fiber formation. Remarkably, dual blockade of TGF-ß receptor and ETR exhibited the restorative effects to reverse the myofibroblast phenotype induced by Ang II. Collectively, TGF-ß1 and ET-1 are major effectors of AT1R/Gαq cascade, and therefore, negative regulation of TGF-ß and ET-1 signaling represents a targeted therapeutic strategy for the prevention and restoration of cardiac fibrosis.


Assuntos
Miofibroblastos , Fator de Crescimento Transformador beta1 , Adulto , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Miofibroblastos/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Receptores de Endotelina/metabolismo , Diferenciação Celular , Fibroblastos/metabolismo , Colágeno Tipo I/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Actinas/metabolismo
8.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901906

RESUMO

Endothelin-1 (ET-1) has been implicated in the pathogenesis of cardiac fibrosis. Stimulation of endothelin receptors (ETR) with ET-1 leads to fibroblast activation and myofibroblast differentiation, which is mainly characterized by an overexpression of α-smooth muscle actin (α-SMA) and collagens. Although ET-1 is a potent profibrotic mediator, the signal transductions and subtype specificity of ETR contributing to cell proliferation, as well as α-SMA and collagen I synthesis in human cardiac fibroblasts are not well clarified. This study aimed to evaluate the subtype specificity and signal transduction of ETR on fibroblast activation and myofibroblast differentiation. Treatment with ET-1 induced fibroblast proliferation, and synthesis of myofibroblast markers, α-SMA, and collagen I through the ETAR subtype. Inhibition of Gαq protein, not Gαi or Gßγ, inhibited these effects of ET-1, indicating the essential role of Gαq protein-mediated ETAR signaling. In addition, ERK1/2 was required for ETAR/Gαq axis-induced proliferative capacity and overexpression of these myofibroblast markers. Antagonism of ETR with ETR antagonists (ERAs), ambrisentan and bosentan, inhibited ET-1-induced cell proliferation and synthesis of α-SMA and collagen I. Furthermore, ambrisentan and bosentan promoted the reversal of myofibroblasts after day 3 of treatment, with loss of proliferative ability and a reduction in α-SMA synthesis, confirming the restorative effects of ERAs. This novel work reports on the ETAR/Gαq/ERK signaling pathway for ET-1 actions and blockade of ETR signaling with ERAs, representing a promising therapeutic strategy for prevention and restoration of ET-1-induced cardiac fibrosis.


Assuntos
Sistema de Sinalização das MAP Quinases , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , Endotelina-1/metabolismo , Bosentana/farmacologia , Transdução de Sinais , Fibroblastos/metabolismo , Diferenciação Celular , Proliferação de Células , Colágeno Tipo I/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Colágeno/metabolismo , Fibrose
9.
Biomedicines ; 11(1)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36672739

RESUMO

The continuous death of hepatocytes induced by various etiologies leads to an aberrant tissue healing process and promotes the progression of liver fibrosis and ultimately chronic liver diseases. To date, effective treatments to delay this harmful process remain an unmet clinical need. Cycloastragenol is an active phytochemical substance isolated from Astragalus membranaceus, a plant used in traditional Chinese medicine to protect the liver. Therefore, our study aimed to elucidate the efficacy of cycloastragenol on carbon-tetrachloride (CCl4)-induced liver fibrosis in mice. We found that cycloastragenol at 200 mg/kg dosage exhibited anti-fibrotic efficacy as demonstrated by a decrease in collagen deposition, downregulation of mRNA expression of collagen type 1, and a reduction in the content of total collagens. In addition, cycloastragenol further augmented the levels of anti-fibrotic matrix metalloproteinases (Mmps), that is, Mmp8, proMmp9, and Mmp12, which play a pivotal role in fibrosis resolution. According to histological analysis and serum markers of hepatotoxicity, cycloastragenol protected the livers from damage and mitigated the increment of serum alanine aminotransferase and bilirubin implicating hepatoprotective efficacy against CCl4. Moreover, cycloastragenol upregulated the mRNA expression of interleukin 6, a pleiotropic cytokine plays a vital role in the promotion of hepatocyte regeneration. In conclusion, cycloastragenol alleviated the progression of liver fibrosis in CCl4-treated mice and its anti-fibrotic efficacy was mainly due to the hepatoprotective efficacy.

10.
Sci Rep ; 12(1): 21050, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473898

RESUMO

Due to intact reactive oxygen species homeostasis and glucose metabolism, C57BL/6NRj mice are especially suitable to study cellular alterations in metabolism. We applied Nuclear Magnetic resonance spectroscopy to analyze five different tissues of this mouse strain during aging and included female and male mice aged 3, 6, 12, and 24 months. Metabolite signatures allowed separation between the age groups in all tissues, and we identified the most prominently changing metabolites in female and male tissues. A refined analysis of individual metabolite levels during aging revealed an early onset of age-related changes at 6 months, sex-specific differences in the liver, and a biphasic pattern for various metabolites in the brain, heart, liver, and lung. In contrast, a linear decrease of amino acids was apparent in muscle tissues. Based on these results, we assume that age-related metabolic alterations happen at a comparably early aging state and are potentially associated with a metabolic switch. Moreover, identified differences between female and male tissues stress the importance of distinguishing between sexes when studying age-related changes and developing new treatment approaches. Besides, metabolomic features seem to be highly dependent on the genetic background of mouse strains.


Assuntos
Envelhecimento , Camundongos Endogâmicos C57BL , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL/metabolismo
11.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430296

RESUMO

Patients with type two diabetes mellitus (T2DM) are at increased risk for cardiovascular diseases. Impairments of endothelin-1 (ET-1) signaling and mTOR pathway have been implicated in diabetic cardiomyopathies. However, the molecular interplay between the ET-1 and mTOR pathway under high glucose (HG) conditions in H9c2 cardiomyoblasts has not been investigated. We employed MTT assay, qPCR, western blotting, fluorescence assays, and confocal microscopy to assess the oxidative stress and mitochondrial damage under hyperglycemic conditions in H9c2 cells. Our results showed that HG-induced cellular stress leads to a significant decline in cell survival and an impairment in the activation of ETA-R/ETB-R and the mTOR main components, Raptor and Rictor. These changes induced by HG were accompanied by a reactive oxygen species (ROS) level increase and mitochondrial membrane potential (MMP) loss. In addition, the fragmentation of mitochondria and a decrease in mitochondrial size were observed. However, the inhibition of either ETA-R alone by ambrisentan or ETA-R/ETB-R by bosentan or the partial blockage of the mTOR function by silencing Raptor or Rictor counteracted those adverse effects on the cellular function. Altogether, our findings prove that ET-1 signaling under HG conditions leads to a significant mitochondrial dysfunction involving contributions from the mTOR pathway.


Assuntos
Endotelina-1 , Miócitos Cardíacos , Humanos , Endotelina-1/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Miócitos Cardíacos/metabolismo , Receptor de Endotelina A/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Receptor de Endotelina B
12.
Eur J Pharmacol ; 937: 175384, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372276

RESUMO

Stimulation of angiotensin II receptor (ATR) with angiotensin II (Ang II) accelerates cardiac fibroblast activation, resulting in upregulation of cytokines and growth factors. Growth factors were strongly upregulated in animal models of myocardial fibrosis and hypertrophy as well as patients with heart failure. Nevertheless, the signal transduction of ATR for upregulation of growth factors in human cardiac fibroblasts contributing to myocyte hypertrophy have not fully understood. Long-term Ang II treatment of human cardiac fibroblasts provokes the synthesis and secretion of connective tissue growth factor (CTGF), transforming growth factor beta1 (TGF-ß1), and vascular endothelial growth factor (VEGF) through the AT1R subtype. Blockade of Gαq, not Gαi or Gα12/13, protein signaling inhibited AT1R-mediated upregulation of CTGF, TGF-ß1, and VEGF. In addition, AT1R overstimulation induced upregulation of growth factors via the TGF-ß-dependent and ERK1/2-dependent pathways. Growth factors secreted from cardiac fibroblasts are necessary for the induction of hypertrophic markers, atrial natriuretic peptide (ANP) and ß-myosin heavy chain (ß-MHC), resulting in myocyte hypertrophy. Candesartan, irbesartan, and valsartan had greater effects than losartan for blockade of fibrotic and hypertrophic effects of Ang II. Our data support the concept whereby sustained AT1R stimulation contributes to the development of myocardial fibrosis and hypertrophy, and advances understanding of this complex AT1R signaling, including fibroblasts-myocytes communication during pathological conditions.


Assuntos
Cardiomiopatias , Fator de Crescimento Transformador beta , Animais , Humanos , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Cardiomiopatias/metabolismo , Fibroblastos , Fibrose , Hipertrofia/patologia , Células Musculares/metabolismo , Miocárdio/metabolismo , Receptores de Angiotensina , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
13.
Stroke ; 53(11): 3506-3513, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36128904

RESUMO

It has previously been shown in several animal experiments that platelet GPVI (glycoprotein VI) contributes to thrombosis, particularly in ischemic stroke. Moreover, GPVI levels are upregulated in stroke patients. This review describes the therapeutic roles of anti-GPVI antibody in preclinical models of ischemic stroke and provides the current evidence for potential benefits of glenzocimab, a Fab fragment of humanized anti-GPVI monoclonal antibody, in stroke patients. Anti-GPVI antibody, JAQ1, significantly decreased infarct volume and improved neurological function in mice with transient middle cerebral artery occlusion, a model of ischemic stroke, with no or minor bleeding tendency. Intravenous injection of glenzocimab in nonhuman primates produced rapid inhibition of ex vivo platelet aggregation induced by collagen (a GPVI ligand). Complete platelet inhibition is observed at 30 minutes following administration without increasing the risk of bleeding. In humans, glenzocimab is well tolerated and produces dose-dependent antiplatelet activity. More importantly, glenzocimab (125-1000 mg) was safe when administered as soon as possible (<3 hours) following reperfusion with the r-tPA (recombinant tissue-type plasminogen activator) in patients with acute ischemic stroke. Although glenzocimab 1000 mg (a selected dose) did not demonstrate a significant improvement in overall clinical outcomes, it appeared to provide benefits in severe cases and in patients who required thrombectomy. This promising efficacy together with a good safety profile of glenzocimab warrant further investigation in phase III (ACTISAVE [Adaptive Efficacy and Safety Study of Glenzocimab Used as an Add-On Therapy on Top of Standard of Care in the 4.5 Hours Following an Acute Ischemic Stroke]) clinical study.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Animais , Camundongos , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Ativador de Plasminogênio Tecidual/uso terapêutico , Glicoproteínas da Membrana de Plaquetas/uso terapêutico , Ligantes , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Fragmentos Fab das Imunoglobulinas/farmacologia , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Colágeno
14.
Molecules ; 27(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080483

RESUMO

Hypoxia-inducible factor-1α (HIF-1α) is a major transcriptional regulator that plays a crucial role in the hypoxic response of rapidly growing tumors. Overexpression of HIF-1α has been associated with breast cancer metastasis and poor clinical prognosis. Plumbagin, the main phytochemical from Plumbago indica, exerts anticancer effects via multiple mechanisms. However, its precise mechanisms on breast cancer cells under hypoxic conditions has never been investigated. This study aims to examine the anticancer effect of plumbagin on MCF-7 cell viability, transcriptional activity, and protein expression of HIF-1α under normoxia and hypoxia-mimicking conditions, as well as reveal the underlying signaling pathways. The results demonstrate that plumbagin decreased MCF-7 cell viability under normoxic conditions, and a greater extent of reduction was observed upon exposure to hypoxic conditions induced by cobalt chloride (CoCl2). Mechanistically, MCF-7 cells upregulated the expression of HIF-1α protein, mRNA, and the VEGF target gene under CoCl2-induced hypoxia, which were abolished by plumbagin treatment. In addition, inhibition of HIF-1α and its downstream targets did not affect the signaling transduction of the PI3K/Akt/mTOR pathway under hypoxic state. This study provides mechanistic insight into the anticancer activity of plumbagin in breast cancer cells under hypoxic conditions by abolishing HIF-1α at transcription and post-translational modifications.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinases , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Feminino , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Naftoquinonas , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Pharmaceuticals (Basel) ; 15(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36015077

RESUMO

Pumpkin seed oil (PSO)-loaded niosomes were prepared from Tween 20 and cholesterol by ethanol injection. Confocal microscopy showed better skin permeation and hair follicle accumulation of the niosomes compared to the PSO solution. The PSO-loaded niosomes inhibited 5α-reductase activity in DU-145 cells and hindered IL-6 activity in RAW 264.7 cells. These effects indicated the great potential of PSO-loaded niosomes to reduce hair loss. The hair scalp serum with PSO-loaded niosomes did not show irritation to reconstructed human skin. This formulation presented a significant decrease in the percentage of fallen hairs by 44.42% in the in vivo 60-second hair count experiment and a significant increase in the anagen to telogen (A/T) ratio (1.4-fold) in the TrichoScan® evaluation after 8 weeks of treatment compared to the initial conditions, indicating the promising efficacy of PSO-loaded niosomes as a natural alternative for anti-hair loss therapy.

16.
Toxicol Appl Pharmacol ; 451: 116175, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35901927

RESUMO

Oxidative stress causes cellular injury and damage in the heart primarily through apoptosis resulting in cardiac abnormalities such as heart failure and cardiomyopathy. During oxidative stress, stimulation of adenosine receptor (AR) has been shown to protect against oxidative damage due to their cytoprotective properties. However, the subtype specificity and signal transductions of adenosine A1 receptor (A1R) on cardiac protection during oxidative stress have remained elusive. In this study, we found that stimulation of A1Rs with N6-cyclopentyladenosine (CPA), a specific A1R agonist, attenuated the H2O2-induced intracellular and mitochondrial reactive oxygen species (ROS) production and apoptosis. In addition, A1R stimulation upregulated the synthesis of antioxidant enzymes (catalase and GPx-1), antiapoptotic proteins (Bcl-2 and Bcl-xL), and mitochondria-related markers (UCP2 and UCP3). Blockades of Gßγ subunit of heterotrimeric Gαi protein antagonized A1R-mediated antioxidant and antiapoptotic effects, confirming the potential role of Gßγ subunit-mediated A1R signaling. Additionally, cardioprotective effects of CPA mediated through PI3K/Akt- and ERK1/2-dependent signaling pathways. Thus, we propose that A1R represents a promising therapeutic target for prevention of oxidative injury in the heart.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Adenosina/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Peróxido de Hidrogênio/toxicidade , Sistema de Sinalização das MAP Quinases , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais
17.
J Oleo Sci ; 71(7): 1085-1096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35781257

RESUMO

Phyllanthus emblica Linn. (PE) has been used to promote hair growth for decades. In this study, dried PE fruit powder was extracted, tested for biological activities, and loaded into transfersomes for hair follicle targeting. Before lyophilization, PE fruit powder was extracted using 2 solvent systems, water and 30% ethanol. The PE 30% ethanolic extract had higher antioxidant activity and total phenolic content than the PE aqueous extract. However, the cytotoxicity of the PE 30% ethanolic extract was higher than that of PE aqueous extract. As a result, the PE aqueous extract was analyzed using ultra-performance liquid chromatography and found that the major component of the PE aqueous extract was gallic acid. Afterward, the PE aqueous extract was tested for its potential to activate the expression of genes involved in hair growth promotion in human keratinocytes. At a non-toxic concentration (10 µg/mL), this extract promoted various growth factors comparable to 1% minoxidil. PE-loaded transfersomes were prepared to deliver the PE aqueous extract to the hair follicle. The particle size and polydispersity index of PE-loaded transfersomes were 228 nm and 0.25, respectively. After 3 months of storage, the particle size at 4°C and 30°C was 218 nm and 241 nm, respectively, which was comparable to its initial size. However, at 40°C, the particle size dramatically increased (315 nm). The fluorescent agent, rhodamine B, was used to evaluate the potential of transfersomes to target hair follicles. Rhodamine B transfersomes had better penetration and accumulation in hair follicles than rhodamine B solution. To conclude, the PE aqueous extract, mainly composed of gallic acid, can activate hair growth gene expression. The extract can be loaded into hair follicles targeting transfersomes. Thus, PE-loaded transfersomes are a promising delivery system for hair follicle targeting to promote hair growth.


Assuntos
Phyllanthus emblica , Antioxidantes/metabolismo , Ácido Gálico , Folículo Piloso/metabolismo , Humanos , Pós
18.
Molecules ; 27(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684480

RESUMO

Breast cancer is the most common cancer among women worldwide. Chemotherapy followed by endocrine therapy is the standard treatment strategy after surgery or radiotherapy. However, breast cancer is highly resistant to the treatments leading to the recurrence of breast cancer. As a result, the development of alternative medicines derived from natural plants with fewer side effects is being emphasized. Andrographolide isolated from Andrographis paniculata is one of the potential substances with anti-cancer properties in a variety of cell types, including breast cancer cells. This study aims to investigate the anti-cancer effects of andrographolide in breast cancer cells by evaluating cell viability and apoptosis as well as its underlying mechanisms through estrogen receptor (ER)-dependent and PI3K/AKT/mTOR signaling pathways. Cell viability, cell apoptosis, mRNA or miRNA, and protein expression were examined by MTT assay, Annexin V-FITC, qRT-PCR, and Western blot analysis, respectively. MCF-7 and MDA-MB-231 cell viability was reduced in a concentration- and time-dependent manner after andrographolide treatment. Moreover, andrographolide induced cell apoptosis in both MCF-7 and MDA-MB-231 cells by inhibiting Bcl-2 and enhancing Bax expression at both mRNA and protein levels. In MCF-7 cells, the ER-positive breast cancer, andrographolide showed an inhibitory effect on cell proliferation through downregulation of ERα, PI3K, and mTOR expression levels. Andrographolide also inhibited MDA-MB-231 breast cancer cell proliferation via induction of cell apoptosis. However, the inhibition of MCF-7 and MDA-MB-231 cell proliferation of andrographolide treatment did not disrupt miR-21. Our findings showed that andrographolide possesses an anti-estrogenic effect by suppressing cell proliferation in MCF-7 cells. The effects were comparable to those of the anticancer drug fulvestrant in MCF-7 cells. This study provides new insights into the anti-cancer effect of andrographolide on breast cancer and suggests andrographolide as a potential alternative from the natural plant for treating breast cancer types that are resistant to tamoxifen and fulvestrant.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Apoptose , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Diterpenos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Fulvestranto/farmacologia , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro , Serina-Treonina Quinases TOR/metabolismo
19.
J Cardiovasc Pharmacol ; 79(1): e50-e63, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34694244

RESUMO

ABSTRACT: Glucagon-like peptide (GLP)-1(7-36), a major active form of GLP-1 hormone, is rapidly cleaved by dipeptidyl peptidase-4 to generate a truncated metabolite, GLP-1(9-36) which has a low affinity for GLP-1 receptor (GLP-1R). GLP-1(7-36) has been shown to have protective effects on cardiovascular system through GLP-1R-dependent pathway. Nevertheless, the cardioprotective effects of GLP-1(9-36) have not fully understood. The present study investigated the effects of GLP-1(9-36), including its underlying mechanisms against oxidative stress and apoptosis in H9c2 cells. Here, we reported that GLP-1(9-36) protects H9c2 cardiomyoblasts from hydrogen peroxide (H2O2)-induced oxidative stress by promoting the synthesis of antioxidant enzymes, glutathione peroxidase-1, catalase, and heme oxygenase-1. In addition, treatment with GLP-1(9-36) suppressed H2O2-induced apoptosis by attenuating caspase-3 activity and upregulating antiapoptotic proteins, Bcl-2 and Bcl-xL. These protective effects of GLP-1(9-36) are attenuated by blockade of PI3K-mediated Akt phosphorylation and prevention of nitric oxide synthase-induced nitric oxide production. Thus, GLP-1(9-36) represents the potential therapeutic target for prevention of oxidative stress and apoptosis in the heart via PI3K/Akt/nitric oxide synthase signaling pathway.


Assuntos
Antioxidantes , Apoptose , Peptídeo 1 Semelhante ao Glucagon , Peróxido de Hidrogênio , Mioblastos Cardíacos , Óxido Nítrico Sintase , Estresse Oxidativo , Fosfatidilinositol 3-Quinase , Proteínas Proto-Oncogênicas c-akt , Animais , Ratos , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Cardiotoxicidade , Linhagem Celular , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peróxido de Hidrogênio/toxicidade , Mioblastos Cardíacos/efeitos dos fármacos , Mioblastos Cardíacos/enzimologia , Mioblastos Cardíacos/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
20.
Methods Cell Biol ; 166: 67-81, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34752340

RESUMO

The ß-adrenergic receptors (ßARs) are members of G protein-coupled receptor (GPCR) family and have been one of the most important GPCRs for studying receptor endocytosis and signaling pathway. Agonist binding of ßARs leads to an activation of G proteins and their canonical effectors. In a parallel way, ßAR stimulation triggers the termination of its signals by receptor desensitization. This termination process is initiated by G protein-coupled receptor kinase (GRK)-induced ßAR phosphorylation that promotes the recruitment of ß-arrestins to phosphorylated ßAR. The uncoupled ßARs which formed a complex with GRK and ß-arrestin subsequently internalize into the cytosol. In addition, GRKs and ß-arrestins also act as scaffolding proteins and signal transducers in their own functions to modulate various downstream effectors. Upon translocation to the ßAR, ß-arrestin is believed to undergo an important conformational change in the structure that is necessary for its signal transduction. The bioluminescence resonance energy transfer (BRET) technique involves the fusion of donor (luciferase) and acceptor (fluorescent) molecules to the interested proteins. Co-expression of these fusion proteins enables direct detection of their interactions in living cells. Here we describe the use of our established BRET technique to track the interaction of ßAR with both GRK and ß-arrestin. The assay described here allows the measurement of the BRET signal for detecting the interaction of ß2AR with GRK2 and the conformational change of ß-arrestin2 following ßAR stimulation.


Assuntos
beta-Arrestina 2 , Transferência de Energia , Fosforilação , beta-Arrestina 1/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , beta-Arrestinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...