Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5408, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012258

RESUMO

Transition metal dichalcogenides (TMDs) are a class of 2D materials demonstrating promising properties, such as high capacities and cycling stabilities, making them strong candidates to replace graphitic anodes in lithium-ion batteries. However, certain TMDs, for instance, MoS2, undergo a phase transformation from 2H to 1T during intercalation that can affect the mobility of the intercalating ions, the anode voltage, and the reversible capacity. In contrast, select TMDs, for instance, NbS2 and VS2, resist this type of phase transformation during Li-ion intercalation. This manuscript uses density functional theory simulations to investigate the phase transformation of TMD heterostructures during Li-, Na-, and K-ion intercalation. The simulations suggest that while stacking MoS2 layers with NbS2 layers is unable to limit this 2H → 1T transformation in MoS2 during Li-ion intercalation, the interfaces effectively stabilize the 2H phase of MoS2 during Na- and K-ion intercalation. However, stacking MoS2 layers with VS2 is able to suppress the 2H → 1T transformation of MoS2 during the intercalation of Li, Na, and K-ions. The creation of TMD heterostructures by stacking MoS2 with layers of non-transforming TMDs also renders theoretical capacities and electrical conductivities that are higher than that of bulk MoS2.

2.
Nanotechnology ; 34(8)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36395493

RESUMO

Atomically thin transition metal dichalcogenides (TMDs), like MoS2with high carrier mobilities and tunable electron dispersions, are unique active material candidates for next generation opto-electronic devices. Previous studies on ion irradiation show great potential applications when applied to two-dimensional (2D) materials, yet have been limited to micron size exfoliated flakes or smaller. To demonstrate the scalability of this method for industrial applications, we report the application of relatively low power (50 keV)4He+ion irradiation towards tuning the optoelectronic properties of an epitaxially grown continuous film of MoS2at the wafer scale, and demonstrate that precise manipulation of atomistic defects can be achieved in TMD films using ion implanters. The effect of4He+ion fluence on the PL and Raman signatures of the irradiated film provides new insights into the type and concentration of defects formed in the MoS2lattice, which are quantified through ion beam analysis. PL and Raman spectroscopy indicate that point defects are generated without causing disruption to the underlying lattice structure of the 2D films and hence, this technique can prove to be an effective way to achieve defect-mediated control over the opto-electronic properties of MoS2and other 2D materials.

3.
Sci Rep ; 11(1): 9014, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907244

RESUMO

Li-ion batteries function by Li intercalating into and through the layered electrode materials. Intercalation is a solid-state interaction resulting in the formation of new phases. The new observations presented here reveal that at the nanoscale the intercalation mechanism is fundamentally different from the existing models and is actually driven by nonuniform phase distributions rather than the localized Li concentration: the lithiation process is a 'distribution-dependent' phenomena. Direct structure imaging of 2H and 1T dual-phase microstructures in lithiated MoS2 and WS2 along with the localized chemical segregation has been demonstrated in the current study. Li, a perennial challenge for the TEM, is detected and imaged using a low-dose, direct-electron detection camera on an aberration-corrected TEM and confirmed by image simulation. This study shows the presence of fully lithiated nanoscale domains of 2D host matrix in the vicinity of Li-lean regions. This confirms the nanoscale phase formation followed by Oswald ripening, where the less-stable smaller domains dissolves at the expense of the larger and more stable phases.

4.
Chem Commun (Camb) ; 53(88): 12004-12007, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29053160

RESUMO

The incorporation of phenylethylammonium bromide (PEABr) into a fully inorganic CsPbBr3 perovskite framework led to the formation of mixed-dimensional perovskites, which enhanced the photoluminescence due to efficient energy funnelling and morphological improvements. With a PEABr : CsPbBr3 ratio of 0.8 : 1, PeLEDs with a current efficiency of 6.16 cd A-1 and an EQE value of 1.97% have been achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...