Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 15: 762, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26493335

RESUMO

BACKGROUND: Resistance to chemotherapy is common in gastroesophageal cancer. Mechanisms of resistance are incompletely characterised and there are no predictive biomarkers in clinical practice for cytotoxic drugs. We used new cell line models to characterise novel chemotherapy resistance mechanisms and validated them in tumour specimens to identify new targets and biomarkers for gastroesophageal cancer. METHODS: Cell lines were selected for resistance to oxaliplatin, cisplatin and docetaxel and gene expression examined using Affymetrix Exon 1.0 ST arrays. Leads were validated by qRT-PCR and HPLC of tumour metabolites. Protein expression and pharmacological inhibition of lead target SPHK1 was evaluated in independent cell lines, and by immunohistochemistry in gastroesophageal cancer patients. RESULTS: Genes with differential expression in drug resistant cell lines compared to the parental cell line they were derived from, were identified for each drug resistant cell line. Biological pathway analysis of these gene lists, identified over-represented pathways, and only 3 pathways - lysosome, sphingolipid metabolism and p53 signalling- were identified as over-represented in these lists for all three cytotoxic drugs investigated. The majority of genes differentially expressed in chemoresistant cell lines from these pathways, were involved in metabolism of glycosphingolipids and sphingolipids in lysosomal compartments suggesting that sphingolipids might be important mediators of cytotoxic drug resistance in gastroeosphageal cancers . On further investigation, we found that drug resistance (IC50) was correlated with increased sphingosine kinase 1(SPHK1) mRNA and also with decreased sphingosine-1-phosphate lysase 1(SGPL1) mRNA. SPHK1 and SGPL1 gene expression were inversely correlated. SPHK1:SGPL1 ratio correlated with increased cellular sphingosine-1-phosphate (S1P), and S1P correlated with drug resistance (IC50). High SPHK1 protein correlated with resistance to cisplatin (IC50) in an independent gastric cancer cell line panel and with survival of patients treated with chemotherapy prior to surgery but not in patients treated with surgery alone. Safingol a SPHK1 inhibitor, was cytotoxic as a single agent and acted synergistically with cisplatin in gastric cancer cell lines. CONCLUSION: Agents that inhibit SPHK1 or S1P could overcome cytotoxic drug resistance in gastroesophageal cancer. There are several agents in early phase human trials including Safingol that could be combined with chemotherapy or used in patients progressing after chemotherapy.


Assuntos
Aldeído Liases/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Esofágicas/genética , Regulação Neoplásica da Expressão Gênica , Lisofosfolipídeos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Esfingosina/análogos & derivados , Neoplasias Gástricas/genética , Aldeído Liases/biossíntese , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Lisofosfolipídeos/biossíntese , Masculino , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , RNA Neoplásico/genética , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Esfingosina/biossíntese , Esfingosina/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo
2.
Proc Natl Acad Sci U S A ; 106(20): 8302-7, 2009 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-19416878

RESUMO

Gray matter pathology is increasingly recognized as an important feature of multiple sclerosis (MS), but the nature of the immune response that targets the gray matter is poorly understood. Starting with a proteomics approach, we identified contactin-2/transiently expressed axonal glycoprotein 1 (TAG-1) as a candidate autoantigen recognized by both autoantibodies and T helper (Th) 1/Th17 T cells in MS patients. Contactin-2 and its rat homologue, TAG-1, are expressed by various neuronal populations and sequestered in the juxtaparanodal domain of myelinated axons both at the axonal and myelin sides. The pathogenic significance of these autoimmune responses was then explored in experimental autoimmune encephalitis models in the rat. Adoptive transfer of TAG-1-specific T cells induced encephalitis characterized by a preferential inflammation of gray matter of the spinal cord and cortex. Cotransfer of TAG-1-specific T cells with a myelin oligodendrocyte glycoprotein-specific mAb generated focal perivascular demyelinating lesions in the cortex and extensive demyelination in spinal cord gray and white matter. This study identifies contactin-2 as an autoantigen targeted by T cells and autoantibodies in MS. Our findings suggest that a contactin-2-specific T-cell response contributes to the development of gray matter pathology.


Assuntos
Autoantígenos , Autoimunidade , Moléculas de Adesão Celular Neuronais/imunologia , Esclerose Múltipla/imunologia , Fibras Nervosas Amielínicas/patologia , Transferência Adotiva , Animais , Contactina 2 , Encefalomielite Autoimune Experimental/imunologia , Humanos , Esclerose Múltipla/etiologia , Ratos , Linfócitos T/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...