Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 22(3): 77, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33595740

RESUMO

Currently, periodontitis is treated by oral dosage forms (antibiotics) which shows systemic side effects and failed to reach the therapeutic concentration (above minimum inhibitory concentration, MIC) in the periodontal pocket. The present study aimed to overcome the above issues, by designing tailored doxycycline hyclate laden in situ gel by Poloxamer 407, chitosan, and polyethylene glycol 600. The in situ gel-forming system has attracted attention owing to its ability of sustained drug release above MIC, easy administration (syringeability), and high drug retention (localization) in the periodontal cavity. The Box-Behnken design (BBD) was used to tailor and optimize the concentration of Poloxamer 407 (X1 = 14.3%), chitosan (X2 = 0.58%), and polyethylene glycol 600 (X3 = 1.14%) to achieve sufficient syringeability (149 N), t90% (1105 min), and viscosity at non-physiological condition (512 cps) and physiological condition (5415 cps). The optimized in situ gel was clear and isotonic (RBCs test). The gelation temperature of the optimized in situ was 34 ± 1°C with sufficient mucoadhesive strength (26 ± 2 dyn/cm2), gel strength (29 ± 2 sec), and texture profile for periodontal application. The in vitro drug release studies showed sustain release from optimized in situ gel (24h) in comparison to marketed gel (7h). The antimicrobial activity (cup plate technique) of the in situ gel was equivalent to the marketed doxycycline gel, which suggests that the doxycycline hyclate retained its antimicrobial efficacy when formulated as in situ gelling system. In conclusion, BBD was effectively utilized to optimize in situ gel with minimum level of polymers to achieve the required characteristics of the in situ gel for sustaining drug delivery to treat periodontitis.


Assuntos
Antibacterianos/administração & dosagem , Doxiciclina/administração & dosagem , Sistemas de Liberação de Medicamentos , Periodontite/tratamento farmacológico , Quitosana/química , Doxiciclina/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Géis/administração & dosagem , Humanos , Poloxâmero/química , Polímeros/química
2.
Int J Pharm ; 596: 120202, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493600

RESUMO

Felodipine is a calcium channel blocker, which shows low oral bioavailability (<15%) owing to poor water solubility and high first pass metabolism. The aim of the present investigation was to study the surface science (dynamic surface tension) and characteristics of microemulsion (Capmul MCM, Tween 20 and polyethylene glycol) to enhance the oral bioavailability of felodipine by improving permeability of the drug in the intestine. The paper is the first attempt to study the stability of oil-water interface of microemulsion using bubble tensiometer. The Smix at 2:1 ratio showed the maximum microemulsion area which did not alter in the presence of drug. The microemulsion batch coded Fe-O5-Smix45 (5% Capmul MCM and 45% Smix) was selected based on transmittance (>99%), dilution (stable after 100 times dilution with water), size (15.1 nm), dispersibility (grade A) and thermodynamic stability studies. The dynamic surface tension at newly created surface indicate the stability of surfactant film at the oil/water interface. The microemulsion was also stable in the presence of drug and in different buffer phases. The ex vivo intestinal permeability studies showed significant increase in the microemulsion permeation (74.1% after 1 h) in comparison to the felodipine suspension (16.9% after 1 h). The in vivo pharmacokinetic parameters in the rat model confirmed the improvement in oral bioavailability with microemulsion (relative bioavailability = 21.9) in comparison to the felodipine suspension, due to high surface area of oil droplets and its lymphatic uptake via transcellular route. In conclusion, the stable microemulsion offers a promising approach to improve the oral bioavailability of felodipine which can help to reduce the dose and its associated side effects.


Assuntos
Felodipino , Tensoativos , Administração Oral , Animais , Disponibilidade Biológica , Emulsões , Tamanho da Partícula , Ratos , Solubilidade
3.
Int J Pharm ; 554: 264-275, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30423418

RESUMO

The aim of the present research work was to formulate, optimize and evaluate the in-situ gel for the ophthalmic drug delivery using the combination of gellan gum and carbopol 934P. The Box-Behnken design was applied to optimize the concentration of gellan gum (X1), carbopol 934P (X2) and benzododecenium bromide (X3) to achieve the maximum viscosity [at physiological condition; 35 °C, pH 7.4, and simulated tear fluid (STF)], mucoadhesive strength, permeability coefficient and sustained release of the drug from the gel with constraint on the viscosity under the non-physiological condition (25 °C, pH 5). Response surface plots were drawn, the statistical validity of the polynomials was established, and optimized formulation was selected by the feasibility and grid search. The design proposed the optimized batch by selecting the independent variables as gellan gum (0.55% w/v), carbopol 934P (0.35% w/v) and benzododecenium bromide (0.013% w/v) to achieve the maximum viscosity (3363 cps) at physiological condition, mucoadhesive strength (22.35 dyn/cm2), t90% (1200 min), permeability coefficient (1.36 × 10-5 sq.cm/sec), with minimum viscosity (131 cps) under the non-physiological condition. The combination of gellan gum and carbopol 934P improved the gelation (synergistic effect) characteristics of the in situ gel. The optimized in situ gel was clear, isotonic, pH 4.7 and showed pseudoplastic flow, high in vitro gelling capacity, low contact angle, acceptable hardness (51018 gm), compressibility (64617 gm) and adhesiveness (74 gm) values for the ocular application. The ex vivo study showed the significant protection of the mast cell from the degranulation. The ocular irritation and histopathology studies in the rabbit eyes confirmed the safety of in situ gel for human use. The in vivo drug release studies showed the presence of drug in the rabbit tear fluid up to 3 h in comparison to just 1 h with the eye drop solution. The contact time of the in situ gel in the human eye was 15.0 ±â€¯2.5 min, which was >2 folds higher than the marketed gel (6.0 ±â€¯3.2 min), which could reduce the dosing frequency and total dose of drug. The Box-Behnken design facilitated the optimization of in situ gel for sustained ophthalmic drug delivery.


Assuntos
Antialérgicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Excipientes/química , Cloridrato de Olopatadina/administração & dosagem , Acrilatos/química , Adesividade , Administração Oftálmica , Animais , Compostos de Benzalcônio/química , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Feminino , Géis , Cabras , Humanos , Masculino , Polissacarídeos Bacterianos/química , Coelhos , Ratos , Viscosidade
4.
Mater Sci Eng C Mater Biol Appl ; 75: 1231-1241, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28415411

RESUMO

The present study illustrates the application of the concept of Quality by Design for development, optimization and evaluation of Lorazepam loaded microemulsion containing ion responsive In situ gelator gellan gum and carbopol 934. A novel approach involving interactions between surfactant and polymer was employed to achieve controlled drug release and reduced mucociliary clearance. Microemulsion formulated using preliminary solubility study and pseudo ternary phase diagrams showed significantly improved solubilization capacity of Lorazepam with 54.31±6.07nm droplets size. The effect of oil to surfactant/cosurfactant ratio and concentration of gelling agent on the drug release and viscosity of microemulsion gel (MEG) was evaluated using a 32 full factorial design. The gel of optimized formulation (MEG1) showed a drug release up to 6h of 97.32±1.35% of total drug loaded. The change in shear-dependent viscosity for different formulations on interaction with Simulated Nasal Fluid depicts the crucial role of surfactant-polymer interactions on the gelation properties along with calcium ions binding on the polymer chains. It is proposed that the surfactant-polymer interactions in the form of a stoichiometric hydrogen bonding between oxyethylene and carboxylic groups of the polymers used, provides exceptional ME stability and adhesion properties. Compared with the marketed formulation, optimized MEG showed improved pharmacodynamic activity. Ex vivo diffusion studies revealed significantly higher release for MEG compared to microemulsion and drug solution. MEG showed higher flux and permeation across goat nasal mucosa. According to the study, it could be concluded that formulation would successfully provide the rapid onset of action, and decrease the mucociliary clearance due to formation of in situ gelling mucoadhesive system.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Lorazepam/química , Administração Intranasal , Emulsões , Humanos , Lorazepam/uso terapêutico
5.
Int J Pharm Investig ; 5(4): 247-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26682195

RESUMO

PURPOSE: The aim of the present work was to improve rate of dissolution and processing parameters of BCS class II drug, chlorzoxazone using cogrinding technique in the presence of different excipients as a carrier. MATERIALS AND METHODS: The drug was coground with various carriers like polyethylene glycol (PEG 4000), hydroxypropyl methylcellulose (HPMC) E50LV, polyvinylpyrrolidone (PVP)K30, Kaolin and Neusilin US2 using ball mill, where only PEG 4000 improved dissolution rate of drug by bringing amorphization in 1:3 ratio. The coground mixture after 3 and 6 h was evaluated for various analytical, physicochemical and mechanical parameters. RESULTS: The analysis showed conversion of Chlorzoxazone from its crystalline to amorphization form upon grinding with PEG 4000. Coground mixture as well as its directly compressed tablet showed 2.5-fold increment in the dissolution rate compared with pure drug. Directly compressible tablets prepared from pure drug required a large quantity of microcrystalline cellulose (MCC) during compression. The coground mixture and formulation was found stable in nature even after storage (40°C/75% relative humidity). CONCLUSIONS: Cogrinding can be successfully utilized to improve the rate of dissolution of poorly water soluble drugs and hence bioavailability.

6.
Drug Dev Ind Pharm ; 39(3): 437-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22380546

RESUMO

BACKGROUND: Direct tabletting is a need of Pharmaceutical industries. Poor mechanical properties of drug particles require wet granulation which is uneconomical, laborious, and tedious. OBJECTIVE: Objective of this work was to study influence of various polymers/excipients on formation of directly compressible Crystallo-co-agglomerates (CCA) of water soluble drug Secnidazole (hydroxy-2-propyl)-1-methyl-2-nitro-5-imidazole), an antimicrobial agent. METHOD: Acetone-petroleum ether system was used to develop CCA of drug in the presence of polymers/excipients. Clarity of the supernatant was considered an endpoint for completion of agglomeration. The prepared CCA were subjected for topographic, micromeritic, mechanical, compressional, and drug release properties. RESULTS: The process yielded ~92 to 98% wt/wt CCA containing secnidazole with the diameter between 0.2 and 0.7 mm. CCA showed excellent flow, packability, compatibility, and crushing strength. Heckel plot showed lower σ(0) and higher tensile strength with lower elastic recovery (0.55-1.28%) of CCA. Dissolution profile of CCA was improved. Differential scanning calorimetry , fourier transform infra-red, and x-ray diffractometry results showed absence of drug-excipient interaction. DISCUSSION: Matrix beads were generated with uniform dispersion of crystallized drug. Excellent flow, packability, and compactability were due to sphericity of agglomerates. Higher crushing strength of CCA was an indication of good handling qualities. Lower σ(0), higher tensile strength, and lower elastic recovery indicated excellent compressibility of agglomerates. Improvement in dissolution profile was due to porous nature of CCA. CONCLUSION: Excipients and polymers can play a key role to prepare CCA, an excellent alternative to wet granulation process to prepare particles for direct compression.


Assuntos
Antiprotozoários/química , Química Farmacêutica , Composição de Medicamentos/métodos , Excipientes/química , Metronidazol/análogos & derivados , Polímeros/química , Cristalização/métodos , Metronidazol/química , Tamanho da Partícula
7.
Acta Pharm ; 60(2): 165-75, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21134853

RESUMO

Metformin hydrochloride exhibits poor compressibility during compaction, often resulting in weak and unacceptable tablets with a high tendency to cap. The purpose of this study was to develop directly compressible metformin hydrochloride by the spray-drying technique in the presence of polymer. Metformin hydrochloride was dissolved in solutions containing a polymer, namely polyvinylpyrrolidone (PVP K30), in various concentrations ranging from 0-3% (m/V). These solutions were employed for spray-drying. Spray-dried drug was evaluated for yield, flow property and compressibility profile. Metformin hydrochloride spray-dried in the presence of 2% PVP K30 showed an excellent flow property and compressibility profile. From the calculated Heckel's parameter (Py = 2.086), it was demonstrated that the treated drug showed better particle arrangement in the initial compression stage. Kawakita analysis revealed better packability of the treated drug compared to the untreated drug. Differential scanning calorimetry and Fourier transform infrared spectroscopy experiments showed that the spray-dried drug did not undergo any chemical modifications. Tablets made from the spray-dried drug (90%, m/m) were evaluated for crushing strength, friability and disintegration time and the results were found satisfactory.


Assuntos
Metformina/química , Povidona/química , Química Farmacêutica/métodos , Força Compressiva , Comprimidos/química , Tecnologia Farmacêutica/métodos
8.
Drug Deliv ; 17(7): 520-31, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20553104

RESUMO

Smart gel periodontal drug delivery systems (SGPDDS) containing gellan gum (0.1-0.8% w/v), lutrol F127 (14, 16, and 18% w/v), and ornidazole (1% w/v) were designed for the treatment of periodontal diseases. Each formulation was characterized in terms of in vitro gelling capacity, viscosity, rheology, content uniformity, in vitro drug release, and syringeability. In vitro gelation time and the nature of the gel formed in simulated saliva for prepared formulations showed polymeric concentration dependency. Drug release data from all formulations was fitted to different kinetic models and the Korsemeyer-Peppas model was the best fit model. Drug release was significantly decreased as the concentration of each polymer component was increased. Increasing the concentration of each polymeric component significantly increased viscosity, syringeability, and time for 50%, 70%, and 90% drug release. In conclusion, the formulations described offer a wide range of physical and drug release characteristics. The formulation containing 0.8% w/v of gellan gum and 16% w/v of lutrol F127 exhibited superior physical characteristics.


Assuntos
Anti-Infecciosos Locais/química , Géis/química , Ornidazol/química , Polietilenos/química , Polipropilenos/química , Polissacarídeos Bacterianos/química , Anti-Infecciosos Locais/uso terapêutico , Química Farmacêutica , Preparações de Ação Retardada , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Cinética , Ornidazol/uso terapêutico , Doenças Periodontais/tratamento farmacológico , Reologia , Temperatura , Viscosidade
9.
Curr Drug Deliv ; 6(5): 486-94, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19863489

RESUMO

The aim of the present investigation was to prepare and optimize the formulation of mouth dissolving film of salbutamol sulphate by applying experimental design technique. The films were prepared using hydroxypropyl methylcellulose, polyvinyl pyrrolidone and polyvinyl alcohol by solvent evaporation technique. Simplex lattice design and desirability function were adopted for the preparation of film possessing desirable and optimized characteristics. Tensile strength, elastic modulus, percentage strain, load at yield, and percentage drug release were selected as dependent variables. Regression equations and contour plots were used to relate the dependent and independent variables. The concept of similarity factor S(d) was used to prove similarity of dissolution between distilled water and simulated saliva (pH = 6.8). The polymers greatly influenced the mechanical properties and % drug release from the film. From the computed value of desirability function, it was determined that the film containing hydroxypropyl methylcellulose and polyvinyl alcohol was the best batch. The experimental design serves to be a useful tool for the formulation development of mouth dissolving film.


Assuntos
Albuterol/farmacocinética , Formas de Dosagem , Sistemas de Liberação de Medicamentos/métodos , Boca , Tecnologia Farmacêutica/métodos , Administração Oral , Albuterol/administração & dosagem , Química Farmacêutica , Estabilidade de Medicamentos , Módulo de Elasticidade , Excipientes/química , Derivados da Hipromelose , Metilcelulose/análogos & derivados , Metilcelulose/química , Maleabilidade , Álcool de Polivinil/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração
10.
AAPS PharmSciTech ; 10(1): 62-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19148762

RESUMO

The present investigation was undertaken to fabricate modified release tablet of metoprolol succinate using hydroxypropyl methylcellulose (HPMC) and xanthan gum as a matrixing agent. A 3(2) full factorial design was employed for the optimization of formulation. The percentage drug released at a given time (Y (60), Y (240) and Y (720)) and the time required for a given percentage of drug to be released (t (50%)) were selected as dependent variables. The in vitro drug dissolution study was carried out in pH 6.8 phosphate buffer employing paddle rotated at 50 rpm. The similarity factor (f (2)) was calculated for selection of best batch considering mean in vitro dissolution data of Seloken XL as a reference profile. It is concluded that the desired drug release pattern can be obtained by using a proper combination of HPMC (high gelling ability) and xanthan gum (quick gelling tendency). The economy of xanthan gum and faster hydration rate favors its use in modified release tablets. The matrix integrity during dissolution testing was maintained by using hydroxypropyl methylcellulose.


Assuntos
Antagonistas Adrenérgicos beta/química , Portadores de Fármacos , Metilcelulose/análogos & derivados , Metoprolol/análogos & derivados , Polissacarídeos Bacterianos/química , Soluções Tampão , Química Farmacêutica , Preparações de Ação Retardada , Géis , Concentração de Íons de Hidrogênio , Derivados da Hipromelose , Cinética , Metilcelulose/química , Metoprolol/química , Modelos Químicos , Solubilidade , Comprimidos , Tecnologia Farmacêutica/métodos
11.
Pharm Dev Technol ; 13(5): 447-56, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18798122

RESUMO

The aim of the present investigation was to develop a site-specific colonic drug delivery system, built on the principles of the combination of pH and time sensitivity. Press-coated mesalamine tablets with a coat of HPMC E-15 were over-coated with Eudragit S100. The in vitro drug release study was conducted using sequential dissolution technique at pH 1.2, 6.0, 7.2 and 6.4 mimicking different regions of gastrointestinal tract. The optimized batch (F2) showed less than 6% of drug release before reaching colonic pH 6.4 and complete drug release was obtained thereafter within 2 hr. A short-term dissolution stability study demonstrated statistical insignificant difference in drug release.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Colo/metabolismo , Sistemas de Liberação de Medicamentos , Mesalamina/administração & dosagem , Química Farmacêutica , Preparações de Ação Retardada , Concentração de Íons de Hidrogênio , Derivados da Hipromelose , Metilcelulose/análogos & derivados , Ácidos Polimetacrílicos/química , Solubilidade , Comprimidos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...