Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597898

RESUMO

The fabrication of thermo-magnetic dual-responsive soft robots often requires intricate designs to implement complex locomotion patterns and utilize the implemented responsive behaviors. This work demonstrates a minimally designed soft robot based on poly-N-isopropylacrylamide (pNIPAM) and ferromagnetic particles, showcasing excellent control over both thermo- and magnetic responses. Free radical polymerization enables the magnetic particles to be entrapped homogeneously within the polymeric network. The integration of magnetic shape programming and temperature response allows the robot to perform various tasks including shaping, locomotion, pick-and-place, and release maneuvers of objects using independent triggers. The robot can be immobilized in a gripping state through magnetic actuation, and a subsequent increase in temperature transitions the robot from a swollen to a collapsed state. The temperature switch enables the robot to maintain a secured configuration while executing other movements via magnetic actuation. This approach offers a straightforward yet effective solution for achieving full control over both stimuli in dual-responsive soft robotics.

2.
ACS Macro Lett ; : 219-226, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285692

RESUMO

The addition of water to native cellulose/1-ethyl-3-methylimidazolium acetate solutions catalyzes the formation of gels, where polymer chain-chain intermolecular associations act as cross-links. However, the relationship between water content (Wc), polymer concentration (Cp), and gel strength is still missing. This study provides the fundamentals to design water-induced gels. First, the sol-gel transition occurs exclusively in entangled solutions, while in unentangled ones, intramolecular associations hamper interchain cross-linking, preventing the gel formation. In entangled systems, the addition of water has a dual impact: at low water concentrations, the gel modulus is water-independent and controlled by entanglements. As water increases, more cross-links per chain than entanglements emerge, causing the modulus of the gel to scale as Gp ∼ Cp2Wc3.0±0.2. Immersing the solutions in water yields hydrogels with noncrystalline, aggregate-rich structures. Such water-ionic liquid exchange is examined via Raman, FTIR, and WAXS. Our findings provide avenues for designing biogels with desired rheological properties.

3.
Soft Matter ; 19(45): 8832-8848, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37947361

RESUMO

The rheology of complex coacervates can be elegantly tuned via the design and control of specific non-covalent hydrophobic interactions between the complexed polymer chains. The well-controlled balance between elasticity and energy dissipation makes complex coacervates perfect candidates for pressure-sensitive adhesives (PSAs). In this work, the polyanion poly(3-sulfopropyl methacrylate) (PSPMA) and the polycation quaternized poly(4-vinylpyridine) (QP4VP) were used to prepare complex coacervates in water. Progressive increase of hydrophobicity is introduced to the polyanion via partial deprotection of the protected precursor. Hence, the polymer chains in the complex coacervates can interact via both electrostatic (controlled by the amount of salt) and hydrophobic (controlled by the deprotection degree) interactions. It was observed that: (i) a rheological time-salt-hydrophobicity superposition principle is applicable, and can be used as a predictive tool for rheology, (ii) the slowdown of the stress relaxation dynamics, due to the increase of hydrophobic stickers (lower deprotection degree), can be captured by the sticky-Rouse model, and (iii) the systematic variation of hydrophobic stickers, amount of salt, and molecular weight of the polymers, enables the identification of optimizing parameters to design aqueous PSA systems. The presented results offer new pathways to control the rheology of complex coacervates and their applicability as PSAs.

4.
Macromolecules ; 56(15): 5891-5904, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576476

RESUMO

Complex coacervates make up a class of versatile materials formed as a result of the electrostatic associations between oppositely charged polyelectrolytes. It is well-known that the viscoelastic properties of these materials can be easily altered with the ionic strength of the medium, resulting in a range of materials from free-flowing liquids to gel-like solids. However, in addition to electrostatics, several other noncovalent interactions could influence the formation of the coacervate phase depending on the chemical nature of the polymers involved. Here, the importance of intermolecular hydrogen bonds on the phase behavior, microstructure, and viscoelasticity of hyaluronic acid (HA)-chitosan (CHI) complex coacervates is revealed. The density of intermolecular hydrogen bonds between CHI units increases with increasing pH of coacervation, which results in dynamically arrested regions within the complex coacervate, leading to elastic gel-like behavior. This pH-dependent behavior may be very relevant for the controlled solidification of complex coacervates and thus for polyelectrolyte material design.

5.
Carbohydr Res ; 530: 108854, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37329646

RESUMO

Amphiphilic glycoconjugates offer an important prospect for development as chemical biology tools and biosurfactants. The chemical synthesis of such materials is required to expedite such prospect, compounded by the example of oleyl glycosides. Herein, we report a mild and reliable glycosylation method to access oleyl glucosides, glycosidating oleyl alcohol with α-trichloroacetimidate donors. We demonstrate capability for this methodology, extending it to synthesise the first examples of pyranose-component fluorination and sulfhydryl modifications within glucosides and glucosamines of oleyl alcohol. These compounds provide an exciting series of tools to explore processes and materials that utilise oleyl glycosides, including as probes for glycosphingolipid metabolism.


Assuntos
Glucosídeos , Glicosídeos , Glicosídeos/química , Álcoois Graxos , Glicoconjugados/química , Compostos de Sulfidrila
6.
Adv Mater ; 35(28): e2210769, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36916861

RESUMO

3D bioprinting is a powerful fabrication technique in biomedical engineering, which is currently limited by the number of available materials that meet all physicochemical and cytocompatibility requirements for biomaterial inks. Inspired by the key role of coacervation in the extrusion and spinning of many natural materials, hyaluronic acid-chitosan complex coacervates are proposed here as tunable biomaterial inks. Complex coacervates are obtained through an associative liquid-liquid phase separation driven by electrostatic attraction between oppositely charged macromolecules. They offer bioactive properties and facile modulation of their mechanical properties through mild physicochemical changes in the environment, making them attractive for 3D bioprinting. Fine-tuning the salt concentration, pH, and molecular weight of the constituent polymers results in biomaterial inks that are printable in air and water. The biomaterial ink, initially a viscoelastic fluid, transitions into a viscoelastic solid upon printing due to dehydration (for printing in air) or due to a change in pH and ionic composition (for printing in solution). Consequently, scaffolds printed using the complex coacervate inks are stable without the need for post-printing processing. Fabricated cell culture scaffolds are cytocompatible and show long-term topological stability. These results pave the way to a new class of easy-to-handle tunable biomaterials for biofabrication.


Assuntos
Bioimpressão , Tinta , Bioimpressão/métodos , Impressão Tridimensional , Reologia , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Hidrogéis/química
7.
Macromolecules ; 56(5): 1818-1827, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36938509

RESUMO

Liquid mixtures composed of colloidal particles and much smaller non-adsorbing linear homopolymers can undergo a gelation transition due to polymer-mediated depletion forces. We now show that the addition of linear polymers to suspensions of soft colloids having the same hydrodynamic size yields a liquid-to-gel-to-re-entrant liquid transition. In particular, the dynamic state diagram of 1,4-polybutadiene star-linear polymer mixtures was determined with the help of linear viscoelastic and small-angle X-ray scattering experiments. While keeping the star polymers below their nominal overlap concentration, a gel was formed upon increasing the linear polymer content. Further addition of linear chains yielded a re-entrant liquid. This unexpected behavior was rationalized by the interplay of three possible phenomena: (i) depletion interactions, driven by the size disparity between the stars and the polymer length scale which is the mesh size of its entanglement network; (ii) colloidal deswelling due to the increased osmotic pressure exerted onto the stars; and (iii) a concomitant progressive suppression of the depletion efficiency on increasing the polymer concentration due to reduced mesh size, hence a smaller range of attraction. Our results unveil an exciting new way to tailor the flow of soft colloids and highlight a largely unexplored path to engineer soft colloidal mixtures.

8.
Arthritis Rheumatol ; 74(2): 307-317, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34279059

RESUMO

OBJECTIVE: Early selection steps preventing autoreactive naive B cell production are often impaired in patients with autoimmune diseases, but central and peripheral B cell tolerance checkpoints have not been assessed in patients with systemic sclerosis (SSc). This study was undertaken to characterize early B cell tolerance checkpoints in patients with SSc. METHODS: Using an in vitro polymerase chain reaction-based approach that allows the expression of recombinant antibodies cloned from single B cells, we tested the reactivity of antibodies expressed by 212 CD19+CD21low CD10+IgMhigh CD27- new emigrant/transitional B cells and 190 CD19+CD21+CD10-IgM+CD27- mature naive B cells from 10 patients with SSc. RESULTS: Compared to serum from healthy donors, serum from patients with SSc displayed elevated proportions of polyreactive and antinuclear-reactive new emigrant/transitional B cells that recognize topoisomerase I, suggesting that defective central B cell tolerance contributes to the production of serum autoantibodies characteristic of the disease. Frequencies of autoreactive mature naive B cells were also significantly increased in SSc patients compared to healthy donors, thus indicating that a peripheral B cell tolerance checkpoint may be impaired in SSc. CONCLUSION: Defective counterselection of developing autoreactive naive B cells in SSc leads to the production of self antigen-specific B cells that may secrete autoantibodies and allow the formation of immune complexes, which promote fibrosis in SSc.


Assuntos
Autoantígenos/imunologia , Linfócitos B/imunologia , Tolerância Imunológica , Escleroderma Sistêmico/imunologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
J Clin Invest ; 132(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34813502

RESUMO

Although negative selection of developing B cells in the periphery is well described, yet poorly understood, evidence of naive B cell positive selection remains elusive. Using 2 humanized mouse models, we demonstrate that there was strong skewing of the expressed immunoglobulin repertoire upon transit into the peripheral naive B cell pool. This positive selection of expanded naive B cells in humanized mice resembled that observed in healthy human donors and was independent of autologous thymic tissue. In contrast, negative selection of autoreactive B cells required thymus-derived Tregs and MHC class II-restricted self-antigen presentation by B cells. Indeed, both defective MHC class II expression on B cells of patients with rare bare lymphocyte syndrome and prevention of self-antigen presentation via HLA-DM inhibition in humanized mice resulted in the production of autoreactive naive B cells. These latter observations suggest that Tregs repressed autoreactive naive B cells continuously produced by the bone marrow. Thus, a model emerged, in which both positive and negative selection shaped the human naive B cell repertoire and that each process was mediated by fundamentally different molecular and cellular mechanisms.


Assuntos
Apresentação de Antígeno , Linfócitos B/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Imunodeficiência Combinada Severa/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
10.
ACS Nano ; 15(10): 16697-16708, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34623796

RESUMO

Two different classes of hairy self-suspended nanoparticles in the melt state, polymer-grafted nanoparticles (GNPs) and star polymers, are shown to display universal dynamic behavior across a broad range of parameter space. Linear viscoelastic measurements on well-characterized silica-poly(methyl acrylate) GNPs with a fixed core radius (Rcore) and grafting density (or number of arms f) but varying arm degree of polymerization (Narm) show two distinctly different regimes of response. The colloidal Regime I with a small Narm (large core volume fraction) is characterized by predominant low-frequency solidlike colloidal plateau and ultraslow relaxation, while the polymeric Regime II with a large Narm (small core volume fractions) has a response dominated by the starlike relaxation of partially interpenetrated arms. The transition between the two regimes is marked by a crossover where both polymeric and colloidal modes are discerned albeit without a distinct colloidal plateau. Similarly, polybutadiene multiarm stars also exhibit the colloidal response of Regime I at very large f and small Narm. The star arm retraction model and a simple scaling model of nanoparticle escape from the cage of neighbors by overcoming a hopping potential barrier due to their elastic deformation quantitatively describe the linear response of the polymeric and colloidal regimes, respectively, in all these cases. The dynamic behavior of hairy nanoparticles of different chemistry and molecular characteristics, investigated here and reported in the literature, can be mapped onto a universal dynamic diagram of f/[Rcore3/ν0)1/4] as a function of (Narmν0f)/(Rcore3), where ν0 is the monomeric volume. In this diagram, the two regimes are separated by a line where the hopping potential ΔUhop is equal to the thermal energy, kBT. ΔUhop can be expressed as a function of the overcrowding parameter x (i.e., the ratio of f to the maximum number of unperturbed chains with Narm that can fill the volume occupied by the polymeric corona); hence, this crossing is shown to occur when x = 1. For x > 1, we have colloidal Regime I with an overcrowded volume, stretched arms, and ΔUhop > kBT, while polymeric Regime II is linked to x < 1. This single-material parameter x can provide the needed design principle to tailor the dynamics of this class of soft materials across a wide range of applications from membranes for gas separation to energy storage.

11.
Macromolecules ; 54(15): 7234-7243, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34393270

RESUMO

Understanding the effects of polymer brush architecture on particle interactions in solution is requisite to enable the development of functional materials based on self-assembled polymer-grafted nanoparticles (GNPs). Static and dynamic light scattering of polystyrene-grafted silica particle solutions in toluene reveals that the pair interaction potential, inferred from the second virial coefficient, A 2, is strongly affected by the grafting density, σ, and degree of polymerization, N, of tethered chains. In the limit of intermediate σ (∼0.3 to 0.6 nm-2) and high N, A 2 is positive and increases with N. This confirms the good solvent conditions and can be qualitatively rationalized on the basis of a pair interaction potential derived for grafted (brush) particles. In contrast, for high σ > 0.6 nm-2 and low N, A 2 displays an unexpected reversal to negative values, thus indicating poor solvent conditions. These findings are rationalized by means of a simple analysis based on a coarse-grained brush potential, which balances the attractive core-core interactions and the excluded volume interactions imparted by the polymer grafts. The results suggest that the steric crowding of polymer ligands in dense GNP systems may fundamentally alter the interactions between brush particles in solution and highlight the crucial role of architecture (internal microstructure) on the behavior of hybrid materials. The effect of grafting density also illustrates the opportunity to tailor the physical properties of hybrid materials by altering geometry (or architecture) rather than a variation of the chemical composition.

12.
J Chem Phys ; 155(3): 034901, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34293891

RESUMO

We present a systematic investigation of the structure and dynamic properties of model soft-hard colloidal mixtures. Results of a coarse-grained theoretical model are contrasted with rheological data, where the soft and hard colloids are mimicked by large star polymers with high functionality as the soft component and smaller stars with ultrahigh functionality as the hard one. Previous work by us revealed the recovery of the ergodicity of glassy soft star solutions and subsequent arrested phase separation and re-entrant solid transition upon progressive addition of small hard depletants. Here, we use different components to show that a small variation in softness has a significant impact on the state diagram of such mixtures. In particular, we establish that rendering the soft component more penetrable and modifying the size ratio bring about a remarkable shift in both the phase separation region and the glass-melting line so that the region of restored ergodicity can be notably enhanced and extended to much higher star polymer concentrations than for pure systems. We further rationalize our findings by analyzing the features of the depletion interaction induced by the smaller component that result from the interplay between the size ratio and the softness of the large component. These results demonstrate the great sensitivity of the phase behavior of entropic mixtures to small changes in the molecular architecture of the soft stars and point to the importance of accounting for details of the internal microstructure of soft colloidal particles for tailoring the flow properties of soft composites.

13.
ACS Appl Bio Mater ; 4(5): 4140-4151, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34142019

RESUMO

Traumatic peripheral nerve injury (TPNI) represents a major medical problem that results in loss of motor and sensory function, and in severe cases, limb paralysis and amputation. To date, there are no effective treatments beyond surgery in selective cases. In repurposing studies, we found that daily systemic administration of the FDA-approved drug 4-aminopyridine (4-AP) enhanced functional recovery after acute peripheral nerve injury. This study was aimed at constructing a novel local delivery system of 4-AP using thermogelling polymers. We optimized a thermosensitive (4-AP)-poly(lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PLGA-PEG-PLGA) block copolymer formulation. (4-AP)-PLGA-PEG exhibited controlled release of 4-AP both in vitro and in vivo for approximately 3 weeks, with clinically relevant safe serum levels in animals. Rheological investigation showed that (4-AP)-PLGA-PEG underwent a solution to gel transition at 32 °C, a physiologically relevant temperature, allowing us to administer it to an injured limb while subsequently forming an in situ gel. A single local administration of (4-AP)-PLGA-PEG remarkably enhanced motor and sensory functional recovery on post-sciatic nerve crush injury days 1, 3, 7, 14, and 21. Moreover, immunohistochemical studies of injured nerves treated with (4-AP)-PLGA-PEG demonstrated an increased expression of neurofilament heavy chain (NF-H) and myelin protein zero (MPZ) proteins, two major markers of nerve regeneration. These findings demonstrate that (4-AP)-PLGA-PEG may be a promising long-acting local therapeutic agent in TPNI, for which no pharmacologic treatment exists.


Assuntos
4-Aminopiridina/uso terapêutico , Materiais Biocompatíveis/uso terapêutico , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Poliésteres/uso terapêutico , Polietilenoglicóis/uso terapêutico , Temperatura , 4-Aminopiridina/administração & dosagem , Doença Aguda , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/síntese química , Modelos Animais de Doenças , Masculino , Teste de Materiais , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Tamanho da Partícula , Poliésteres/administração & dosagem , Polietilenoglicóis/administração & dosagem
14.
Semin Cancer Biol ; 68: 192-198, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32032699

RESUMO

Drug repositioning, the assignment of new therapeutic purposes to known drugs, is an established strategy with many repurposed drugs on the market and many more at experimental stage. We review three use cases, a herpes drug with benefits in cancer, a cancer drug with potential in autoimmune disease, and a selective and an unspecific drug binding the same target (GPCR). We explore these use cases from a structural point of view focusing on a deep understanding of the underlying drug-target interactions. We review tools and data needed for such a drug-centric structural repositioning approach. Finally, we show that the availability of data on targets is an important limiting factor to realize the full potential of structural drug-repositioning.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antivirais/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Reposicionamento de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Descoberta de Drogas , Humanos
15.
J Rheol (N Y N Y) ; 65(4): 695-711, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35250122

RESUMO

We present a comprehensive experimental rheological dataset for purified entangled ring polystyrenes and their blends with linear chains in nonlinear shear and elongation. In particular, data for shear stress growth coefficient, steady-state shear viscosity, and first and second normal stress differences are obtained and discussed as functions of shear rate as well as molecular parameters (molar mass, blend composition and decreasing molar mass of linear component in blend). Over the extended parameter range investigated, rings do not exhibit clear transient undershoot in shear, in contrast to their linear counterparts and ring-linear blends. For the latter, the size of the undershoot and respective strain appear to increase with shear rate. Universal scaling of strain at overshoot and fractional overshoot (ratio of maximum to steady-state shear stress growth coefficient) indicates subtle differences in the shear-rate dependence between rings and linear polymers or their blends. The shear thinning behaviour of pure rings yields a slope nearly identical to predictions (-4/7) of a recent shear slit model and molecular dynamics simulations. Data for the second normal stress difference are reported for rings and ring-linear blends. While N 2 is negative and its absolute value stays below that of N 1 , as for linear polymers, the ratio -N 2 /N 1 is unambiguously larger for rings compared to linear polymer solutions with the same number of entanglements (almost by factor of two), in agreement with recent non-equilibrium molecular dynamics simulations. Further, -N 2 exhibits slightly weaker shear rate dependence compared to N 1 at high rates, and the respective power-law exponents can be rationalized in view of the slit model (3/7) and simulations (0.6), although further work is needed to unravel the molecular original of the observed behaviour. The comparison of shear and elongational stress growth coefficients for blends reflects the effect of ring-linear threading which leads to significant viscosity enhancement in elongation. Along the same lines, the elongational stress is much larger than the first normal stress in shear, and their ratio is much larger for rings and ring-linear blends compared to linear polymers. This conforms the interlocking scenario of rings and their important role in mechanically reinforcing linear matrices.

16.
Mol Microbiol ; 115(2): 238-254, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33047379

RESUMO

The role of post-transcriptional RNA modification is of growing interest. One example is the addition of non-templated uridine residues to the 3' end of transcripts. In mammalian systems, uridylation is integral to cell cycle control of histone mRNA levels. This regulatory mechanism is dependent on the nonsense-mediated decay (NMD) component, Upf1, which promotes histone mRNA uridylation and degradation in response to the arrest of DNA synthesis. We have identified a similar system in Aspergillus nidulans, where Upf1 is required for the regulation of histone mRNA levels. However, other NMD components are also implicated, distinguishing it from the mammalian system. As in human cells, 3' uridylation of histone mRNA is induced upon replication arrest. Disruption of this 3' tagging has a significant but limited effect on histone transcript regulation, consistent with multiple mechanisms acting to regulate mRNA levels. Interestingly, 3' end degraded transcripts are also subject to re-adenylation. Both mRNA pyrimidine tagging and re-adenylation are dependent on the same terminal-nucleotidyltransferases, CutA, and CutB, and we show this is consistent with the in vitro activities of both enzymes. Based on these data we argue that mRNA 3' tagging has diverse and distinct roles associated with transcript degradation, functionality and regulation.


Assuntos
Aspergillus nidulans/genética , Histonas/genética , RNA Mensageiro/genética , Regiões 3' não Traduzidas/genética , Replicação do DNA/fisiologia , Glutationa/análogos & derivados , Glutationa/genética , Glutationa/metabolismo , Histonas/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases/metabolismo , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Uridina/química
17.
ACS Nano ; 14(12): 17174-17183, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33216546

RESUMO

Polymer membranes are critical to many sustainability applications that require the size-based separation of gas mixtures. Despite their ubiquity, there is a continuing need to selectively affect the transport of different mixture components while enhancing mechanical strength and hindering aging. Polymer-grafted nanoparticles (GNPs) have recently been explored in the context of gas separations. Membranes made from pure GNPs have higher gas permeability and lower selectivity relative to the neat polymer because they have increased mean free volume. Going beyond this ability to manipulate the mean free volume by grafting chains to a nanoparticle, the conceptual advance of the present work is our finding that GNPs are spatially heterogeneous transport media, with this free volume distribution being easily manipulated by the addition of free polymer. In particular, adding a small amount of appropriately chosen free polymer can increase the membrane gas selectivity by up to two orders of magnitude while only moderately reducing small gas permeability. Added short free chains, which are homogeneously distributed in the polymer layer of the GNP, reduce the permeability of all gases but yield no dramatic increases in selectivity. In contrast, free chains with length comparable to the grafts, which populate the interstitial pockets between GNPs, preferentially hinder the transport of the larger gas and thus result in large selectivity increases. This work thus establishes that we can favorably manipulate the selective gas transport properties of GNP membranes through the entropic effects associated with the addition of free chains.

18.
Soft Matter ; 16(46): 10506-10517, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33073269

RESUMO

Collagen, fibrinogen, and thrombin proteins in aqueous buffer solutions are widely used as precursors of natural biopolymers in three-dimensional (3D) bioprinting applications. The proteins are sourced from animals and their quality may vary from batch to batch, inducing differences in the rheological properties of such solutions. In this work, we investigate the rheological response of collagen, fibrinogen, and thrombin protein solutions in bulk and at the solution/air interface. Interfacial rheological measurements show that fibrous collagen, fibrinogen and globular thrombin proteins adsorb and aggregate at the solution/air interface, forming a viscoelastic solid film at the interface. The viscoelastic film corrupts the bulk rheological measurements in rotational rheometers by contributing to an apparent yield stress, which increases the apparent bulk viscosity up to shear rates as high as 1000 s-1. The addition of a non-ionic surfactant, such as polysorbate 80 (PS80) in small amounts between 0.001 and 0.1 v/v%, prevents the formation of the interfacial layer, allowing the estimation of true bulk viscosity of the solutions. The estimation of viscosity not only helps in identifying those protein solutions that are potentially printable with drop-on-demand (DOD) inkjet printing but also detects inconsistencies in flow behavior among the batches.


Assuntos
Bioimpressão , Animais , Colágeno , Fibrinogênio , Reologia , Soluções , Trombina , Viscosidade
19.
ACS Cent Sci ; 6(8): 1401-1411, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32875081

RESUMO

Supramolecular polymers are known to form strong and resilient hydrogels which can take up large amounts of water while exhibiting ease of processing and self-healing. They also possess similarities with networks of biological macromolecules. The combination of these features makes supramolecular polymers ideal candidates for studying mechanisms and consequences of self-assembly, which are relevant to biological materials. At the same time, this renders investigations of mixed hydrogels based on different supramolecular compounds necessary, since this substantially widens their applicability. Here, we address unusual viscoelastic properties of a class of binary hydrogels made by mixing fibrillar supramolecular polymers that are formed from two compounds: 1,3,5-benzene-tricarboxamide decorated with aliphatic chains terminated by tetra(ethylene glycol) (BTA) and a 20 kg/mol telechelic poly(ethylene glycol) decorated with the same hydrogen bonding BTA motif on both ends (BTA-PEG-BTA). Using a suite of experimental and simulation techniques, we find that the respective single-compound-based supramolecular systems form very different networks which exhibit drastically different rheology. More strikingly, mixing the compounds results in a non-monotonic dependence of modulus and viscosity on composition, suggesting a competition between interactions of the two compounds, which can then be used to fine-tune the mechanical properties. Simulations offer insight into the nature of this competition and their remarkable qualitative agreement with the experimental results is promising for the design of mixed hydrogels with desired and tunable properties. Their combination with a sensitive dynamic probe (here rheology) offer a powerful toolbox to explore the unique properties of binary hydrogel mixtures.

20.
Comput Struct Biotechnol J ; 18: 1043-1055, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32419905

RESUMO

Drug repositioning aims to find new indications for existing drugs in order to reduce drug development cost and time. Currently,there are numerous stories of successful drug repositioning that have been reported and many repurposed drugs are already available on the market. Although drug repositioning is often a product of serendipity, repositioning opportunities can be uncovered systematically. There are three systematic approaches to drug repositioning: disease-centric approach, target-centric and drug-centric. Disease-centric approaches identify close relationships between an old and a new indication. A target-centric approach links a known target and its established drug to a new indication. Lastly, a drug-centric approach connects a known drug to a new target and its associated indication. These three approaches differ in their potential and their limitations, but above all else, in the required start information and computing power. This raises the question of which approach prevails in current drug discovery and what that implies for future developments. To address this question, we systematically evaluated over 100 drugs, 200 target structures and over 300 indications from the Drug Repositioning Database. Each analyzed case was classified as one of the three repositioning approaches. For the majority of cases (more than 60%) the disease-centric definition was assigned. Almost 30% of the cases were classified as target-centric and less than 10% as drug-centric approaches. We concluded that, despite the use of umbrella term "drug" repositioning, disease- and target-centric approaches have dominated the field until now. We propose the use of drug-centric approaches while discussing reasons, such as structure-based repositioning techniques, to exploit the full potential of drug-target-disease connections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...