Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(23): 63754-63775, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37059945

RESUMO

The decommissioned fahlore Cu-Sb(-Ag) mine at Mt. Avanza (Carnic Alps, Italy) is a rare example of exploited ore deposits, as the tetrahedrite (Cu6[Cu4(Fe,Zn)2]Sb4S13) is the main ore mineral found. This multi-compartmental geochemical characterisation approach provides one of the first case studies regarding the geochemical behaviour and fate of Hg, Sb, As, Cu, and other elements in solid and water matrices and of Hg in the atmosphere in an environment affected by the mining activity of a fahlore ore deposit. Elevated concentrations of the elements (Cu, Sb, As, Pb, Zn, Hg) associated with both (Zn-Hg)-tetrahedrite and to other minor ore minerals in mine wastes, soils, and stream sediments were observed. Concentrations in waters and stream sediments greatly decreased with increasing distance from the mining area and the Igeo index values testify the highest levels of sediment contamination inside the mine area. Thallium and Ge were associated with the "lithogenic component" and not to sulfosalt/sulphide minerals. Although mine drainage water often slightly exceeded the national regulatory limits for Sb and As, with Sb being more mobile than As, the relatively low dissolved concentrations indicate a moderate stability of the tetrahedrite. The fate of Hg at the investigated fahlore mining district appeared similar to cinnabar mining sites around the world. Weak solubility but the potential evasion of gaseous elemental mercury (GEM) into the atmosphere also appear to be characteristics of Hg in fahlore ores. Although GEM concentrations are such that they do not present a pressing concern, real-time field surveys allowed for the easy identification of Hg sources, proving to be an effective, suitable high-resolution indirect approach for optimising soil sampling surveys and detecting mine wastes and mine adits.


Assuntos
Poluentes do Solo , Oligoelementos , Poluentes Químicos da Água , Monitoramento Ambiental , Mercúrio/análise , Minerais , Solo , Poluentes do Solo/análise , Água , Poluentes Químicos da Água/análise , Oligoelementos/análise
2.
Molecules ; 26(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065538

RESUMO

New Co(II), Ni(II), and Cu(II) complexes were synthesized with the Schiff base ligand obtained by the condensation of sulfathiazole with salicylaldehyde. Their characterization was performed by elemental analysis, molar conductance, spectroscopic techniques (IR, diffuse reflectance and UV-Vis-NIR), magnetic moments, thermal analysis, and calorimetry (thermogravimetry/derivative thermogravimetry/differential scanning calorimetry), while their morphological and crystal systems were explained on the basis of powder X-ray diffraction results. The IR data indicated that the Schiff base ligand is tridentate coordinated to the metallic ion with two N atoms from azomethine group and thiazole ring and one O atom from phenolic group. The composition of the complexes was found to be of the [ML2]∙nH2O (M = Co, n = 1.5 (1); M = Ni, n = 1 (2); M = Cu, n = 4.5 (3)) type, having an octahedral geometry for the Co(II) and Ni(II) complexes and a tetragonally distorted octahedral geometry for the Cu(II) complex. The presence of lattice water molecules was confirmed by thermal analysis. XRD analysis evidenced the polycrystalline nature of the powders, with a monoclinic structure. The unit cell volume of the complexes was found to increase in the order of (2) < (1) < (3). SEM evidenced hard agglomerates with micrometric-range sizes for all the investigated samples (ligand and complexes). EDS analysis showed that the N:S and N:M atomic ratios were close to the theoretical ones (1.5 and 6.0, respectively). The geometric and electronic structures of the Schiff base ligand 4-((2-hydroxybenzylidene) amino)-N-(thiazol-2-yl) benzenesulfonamide (HL) was computationally investigated by the density functional theory (DFT) method. The predictive molecular properties of the chemical reactivity of the HL and Cu(II) complex were determined by a DFT calculation. The Schiff base and its metal complexes were tested against some bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). The results indicated that the antibacterial activity of all metal complexes is better than that of the Schiff base.


Assuntos
Cobalto/química , Cobre/química , Níquel/química , Bases de Schiff/química , Sulfatiazóis/química , Antibacterianos/química , Análise Espectral/métodos
3.
Ultrason Sonochem ; 61: 104807, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31670245

RESUMO

The work aim is focused on two different aspects: first, the investigation of the effect of extended ultra-sound-assisted treatment (us) of carbonaceous nanoparticles, such as carbon nanotubes (CNTs) and carbon black (CB), on their radical scavenging activity, and second, the investigation of the oxidative resistance of polymer-based nanocomposites, containing us-treated CNTs and CB. Particularly, the CNTs and CB have been subjected to us sonication for different time intervals and the performed analysis reveals that both kinds of nanoparticles show decreased average hydrodynamic diameters and large content of surface defects. Really, the increased content of CNTs and CB defects, achieved during the sonication time, leads to an increased reactivity toward 1,1-diphenyl-2-pycryl (DPPH) radicals and an enhanced anti-oxidant activity toward macro-radicals, coming from the photo-degradation of the host polymer matrix. The studies of photo-oxidative behavior of the nanocomposites, based on Ultra High Molecular Weight (UHMWPE), reveal that the us treatment of the nanoparticles has a benefic effect on the oxidative resistance of the nanocomposites, especially at long exposure times. Overall, the ultra-sound-assisted treatment can be considered twofold powerful tool: (i) for disruption of the nanoparticles aggregations, and (ii) for capitalization of surface defects, amplifying and tuning in a controlled way the radical scavenging activity of the carbonaceous nanoparticles.

4.
Nanomaterials (Basel) ; 9(12)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795123

RESUMO

The main objective of this work was to evaluate the potential of Montmorillonite nanoclay (Mt), readily and inexpensively available, for the simultaneous adsorption (and removal) of two classes of pollutants: metal ions and dyes. The attention was focused on two "model" pollutants: Ce(III) and crystal violet (CV). The choice is due to the fact that they are widespread in wastewaters of various origins. These characteristics, together with their effect on human health, make them ideal for studies on water remediation. Moreover, when separated from wastewater, they can be recycled individually in industrial production with no or simple treatment. Clay/pollutant hybrids were prepared under different pH conditions and characterized through the construction of the adsorption isotherms and powder X-ray diffraction. The adsorption behavior of the two contaminants was revealed to be significantly different: the Langmuir model reproduces the adsorption isotherm of Ce(III) better, thus indicating that the clay offers a unique adsorption site to the metal ions, while the Freundlich model proved to be the most reliable for the uptake of CV which implies heterogeneity of adsorption sites. Moreover, metal ions do not adsorb at all under acidic conditions, whereas the dye is able to adsorb under all the investigated conditions. The possibility to modulate the adsorption features by simply changing the pH conditions was successfully employed to develop an efficient protocol for the removal and separation of the different components from aqueous solutions mimicking wastewaters.

5.
ACS Appl Mater Interfaces ; 11(26): 23050-23064, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180643

RESUMO

Alterations in the normal gastrointestinal microbial community caused by unhealthy diet, environmental factors, and antibiotic overuse may severely affect human health and well-being. Novel antimicrobial drug formulations targeting pathogenic microflora while not affecting or even supporting symbiotic microflora are urgently needed. Here we report fabrication of a novel antimicrobial nanocontainer based on halloysite nanotubes loaded with curcumin and protected with a dextrin outer layer (HNTs+Curc/DX) and its effective use to suppress the overgrowth of pathogenic bacteria in Caenorhabditis elegans nematodes. Nanocontainers have been obtained using vacuum-facilitated loading of hydrophobic curcumin into halloysite lumens. We have applied UV-vis and infrared spectroscopy, thermogravimetry and microscopy to characterize the HNTs+Curc/DX nanocontainers. In experiments in vitro we found that HNTs+Curc/DX effectively suppressed the growth of Serratia marcescens cells, whereas Escherichia coli bacteria were not affected. We applied HNTs+Curc/DX nanocontainers to alleviate the S. marcescens infection in C. elegans nematodes in vivo. The nematodes ingest HNTs+Curc/DX at 4-6 ng per worm, which results in improvement of the nematodes' fertility and life expectancy. Remarkably, treatment of S. marcescens-infected nematodes with HNTs+Curc/DX nanocontainers completely restored the longevity, demonstrating the enhanced bioavailability of hydrophobic curcumin. We believe that our results reported here open new avenues for fabrication of effective antimicrobial nanoformulations based on hydrophobic drugs and clay nanotubes.


Assuntos
Anti-Infecciosos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Curcumina/farmacologia , Sistemas de Liberação de Medicamentos , Silicatos de Alumínio/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacocinética , Caenorhabditis elegans/microbiologia , Argila/química , Curcumina/química , Dextrinas/química , Humanos , Nanotubos/química , Termogravimetria
6.
J Funct Biomater ; 9(4)2018 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30347894

RESUMO

We investigated the efficacy of several nanoclays (halloysite, sepiolite and laponite) as nanofillers for Mater-Bi, which is a commercial bioplastic extensively used within food packaging applications. The preparation of Mater-Bi/nanoclay nanocomposite films was easily achieved by means of the solvent casting method from dichloroethane. The prepared bio-nanocomposites were characterized by dynamic mechanical analysis (DMA) in order to explore the effect of the addition of the nanoclays on the mechanical behavior of the Mater-Bi-based films. Tensile tests found that filling Mater-Bi with halloysite induced the most significant improvement of the mechanical performances under traction force, while DMA measurements under the oscillatory regime showed that the polymer glass transition was not affected by the addition of the nanoclay. The tensile properties of the Mater-Bi/halloysite nanotube (HNT) films were competitive compared to those of traditional petroleum plastics in terms of the elastic modulus and stress at the breaking point. Both the mechanical response to the temperature and the tensile properties make the bio-nanocomposites appropriate for food packaging and smart coating purposes. Here, we report a preliminary study of the development of sustainable hybrid materials that could be employed in numerous industrial and technological applications within materials science and pharmaceutics.

7.
ACS Appl Mater Interfaces ; 10(32): 27355-27364, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30028945

RESUMO

A novel green protocol for the deacidifying consolidation of waterlogged archaeological woods through aqueous dispersions of polyethylene glycol (PEG) 1500 and halloysite nanotubes containing calcium hydroxide has been designed. First, we prepared functionalized halloysite nanotubes filled with Ca(OH)2 in their lumen. The controlled and sustained release of Ca(OH)2 from the halloysite lumen extended its neutralization action over time, allowing the development of a long-term deacidification of the wood samples. A preliminary thermomechanical characterization of clay/polymer nanocomposites allows us to determine the experimental conditions to maximize the consolidation efficiency of the wood samples. The penetration of the halloysite-Ca(OH)2/PEG composite within the wooden pores conferred the robustness of the archaeological woods based on the clay/polymer composition of the consolidant mixture. Compared to the archeological woods treated with pure PEG 1500, the addition of modified nanotubes in the consolidant induced a remarkable improvement in the mechanical performance in terms of flexural strength and rigidity. The pH measurements of the treated woods showed that the halloysite-Ca(OH)2 are effective alkaline fillers. Accordingly, the modified nanotubes provided a long-term protection for lignin present in the woods that are exposed to artificial aging under acidic atmosphere. The attained knowledge shows that an easy and green protocol for the long-term preservation of wooden artworks can be achieved by the combination of PEG polymers and alkaline tubular nanostructures obtained through the confinement of Ca(OH)2 within the halloysite cavity.

8.
Nanotechnology ; 29(32): 325702, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-29771681

RESUMO

Halloysite nanotubes were functionalized with stimuli-responsive macromolecules to generate smart nanohybrids. Poly(N-isopropylacrylamide)-co-methacrylic acid (PNIPAAM-co-MA) was selectively adsorbed into halloysite lumen by exploiting electrostatic interactions. Amine-terminated PNIPAAM polymer was also investigated that selectively interacts with the outer surface of the nanotubes. The adsorption site has a profound effect on the thermodynamic behavior and therefore temperature responsive features of the hybrid material. The drug release kinetics was investigated by using diclofenac as a non-steroidal anti-inflammatory drug model. The release kinetics depends on the nanoarchitecture of the PNIPAAM/halloysite based material. In particular, diclofenac release was slowed down above the LCST for PNIPAAM-co-MA/halloysite. Opposite trends occurred for halloysite functionalized with PNIPAAM at the outer surface. This work represents a further step toward the opportunity to extend and control the delivery conditions of active species, which represent a key point in technological applications.

9.
Materials (Basel) ; 11(3)2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29510595

RESUMO

The aim of this work is the investigation of the effect of ultrasound treatment on the structural characteristics of carbon nanotubes (CNTs) and the consequent influence that the shortening induced by sonication exerts on the morphology, rheological behaviour and thermo-oxidative resistance of ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites. First, CNTs have been subjected to sonication for different time intervals and the performed spectroscopic and morphological analyses reveal that a dramatic decrease of the CNT's original length occurs with increased sonication time. The reduction of the initial length of CNTs strongly affects the nanocomposite rheological behaviour, which progressively changes from solid-like to liquid-like as the CNT sonication time increases. The study of the thermo-oxidative behaviour of the investigated nanocomposites reveals that the CNT sonication has a detrimental effect on the thermo-oxidative stability of nanocomposites, especially for long exposure times. The worsening of the thermo-oxidative resistance of sonicated CNT-containing nanocomposites could be attributed to the lower thermal conductivity of low-aspect-ratio CNTs, which causes the increase of the local temperature at the polymer/nanofillers interphase, with the consequent acceleration of the degradative phenomena.

10.
ACS Appl Mater Interfaces ; 10(9): 8265-8273, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29430922

RESUMO

An easy strategy to obtain nanohydrogels within the halloysite nanotube (HNTs) lumen was investigated. Inorganic reverse micelles based on HNTs and hexadecyltrimethylammonium bromides were dispersed in chloroform, and the hydrophilic cavity was used as a nanoreactor to confine the gel formation based on alginate cross-linked by calcium ions. Spectroscopy and electron microscopy experiments proved the confinement of the polymer into the HNT lumen and the formation of calcium-mediated networks. Biological tests proved the biocompatibility of the hybrid hydrogel. The nanogel in HNTs was suitable for drug loading and sustained release with the opportunity of triggered burst release by chemical stimuli. Here, we propose a new strategy based on inorganic reverse micelles for nanohydrogel formation, which are suitable for industrial and biological applications as well as for selective and triggered adsorption and/or release.

11.
Chem Rec ; 18(7-8): 940-949, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29320613

RESUMO

Herein, we report our recent research concerning the development of halloysite based protocols for cleaning, consolidation and protection purposes. Surface modification of halloysite cavity by anionic surfactants was explored to fabricate inorganic micelles able to solubilize hydrophobic contaminants. Hybrid dispersions based on halloysite and ecocompatible polymers were tested as consolidants for paper and waterlogged archaeological woods. Encapsulation of deacidifying and flame retardant agents within the halloysite lumen was conducted with aim to obtain nanofiller with a long-term protection ability. The results prove the suitability and versatility of halloysite nanotubes, which are perspective inorganic nanoparticles within materials science, remedation and conservation of cultural heritage fields.

12.
Nanomaterials (Basel) ; 7(8)2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28788058

RESUMO

Hollow halloysite nanotubes have been used as nanocontainers for loading and for the triggered release of calcium hydroxide for paper preservation. A strategy for placing end-stoppers into the tubular nanocontainer is proposed and the sustained release from the cavity is reported. The incorporation of Ca(OH)2 into the nanotube lumen, as demonstrated using transmission electron microscopy (TEM) imaging and Energy Dispersive X-ray (EDX) mapping, retards the carbonatation, delaying the reaction with CO2 gas. This effect can be further controlled by placing the end-stoppers. The obtained material is tested for paper deacidification. We prove that adding halloysite filled with Ca(OH)2 to paper can reduce the impact of acid exposure on both the mechanical performance and pH alteration. The end-stoppers have a double effect: they preserve the calcium hydroxide from carbonation, and they prevent from the formation of highly basic pH and trigger the response to acid exposure minimizing the pH drop-down. These features are promising for a composite nanoadditive in the smart protection of cellulose-based materials.

13.
Carbohydr Polym ; 170: 198-205, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28521987

RESUMO

Novel composite bioplastics were successfully prepared by filling pectin matrix with treated coffee grounds. The amount of coffee dispersed into the pectin was changed within a wide filler range. The morphology of the pectin/coffee hybrid films was studied by microscopic techniques in order to investigate their mesoscopic structure as well as the sizes distribution of the particles dispersed into the matrix. The micrographs showed that the coffee grounds are uniformly dispersed within the polymeric matrix. The morphological characteristics of the biocomposite films were correlated to their properties, such as wettability, water uptake, thermal behavior and mechanical performances. Dynamic mechanical test were conducted as a function of the humidity conditions. As a general result, a worsening of the mechanical performances was induced by the addition of the coffee grounds into the pectin. An additional UV curing treatment was conducted on the pectin/coffee films with the aim to improve their tensile and viscoelastic features. The cured films showed promising and tunable properties that are dependent on both the filler content and the UV irradiation. In particular, the presence of single coffee particles into the pectin matrix renders the UV curing treatment effective in the enhancement of the elasticity as well as the traction resistance, whereas the cured composite films containing coffee clusters showed only more elastic characteristics. With this study, we fabricated pectin/coffee bioplastics with controlled behavior appealing for specific application within the food packaging.


Assuntos
Coffea/química , Química Verde , Pectinas/química , Raios Ultravioleta , Elasticidade , Teste de Materiais
14.
Langmuir ; 33(13): 3317-3323, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28276693

RESUMO

Studies on the adsorption of biopolymers onto halloysite nanotubes (HNTs) in water were conducted. Three polymers with different charges-anionic (pectin), neutral (hydroxypropyl cellulose), and cationic (chitosan)-were chosen. The thermodynamic parameters for the adsorption of polymers onto the HNT surface were determined by isothermal titration calorimetry (ITC). The experimental data were interpreted based on a Langmuir adsorption model. The standard variations in free energy, enthalpy, and entropy of the process were obtained and discussed. Turbidimetry was used to evaluate the stability of functionalized nanoparticles in water. The ζ-potential clarified the surface charge properties of functionalized nanotubes upon polymer adsorption. The interaction of modified nanotubes with polymers led to the formation of a colloidal system with tunable stability and surface properties, which offers different perspectives on new applications of these dispersions, such as carriers for substances to be released in response to external stimuli.

15.
J Mater Chem B ; 4(13): 2229-2241, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32263219

RESUMO

We describe the preparation and properties of the first example of a synergic nanoantioxidant, obtained by different functionalizations of the external surface and the inner lumen of halloysite nanotubes (HNTs). Trolox, a mimic of natural α-tocopherol, was selectively grafted on the HNT external surface; while quercetin, a natural polyphenolic antioxidant, was loaded into the inner lumen to afford a bi-functional nanoantioxidant, HNT-Trolox/Que, which was investigated for its reactivity with transient peroxyl radicals and a persistent 1,1-diphenyl-2-picrylhydrazyl (DPPH˙) radical in comparison with the corresponding mono-functional analogues HNT-Trolox and HNT/Que. Both HNT-Trolox and HNT/Que showed good antioxidant performance in the inhibited autoxidation of organic substrates; however HNT-Trolox/Que protection by reaction with peroxyl radicals was 35% higher in acetonitrile and 65% in chlorobenzene, as compared to the expected performance based on the sum of contributions of NHT-Trolox and NHT/Que. Similar enhancement was observed also in the trapping of DPPH˙ radicals. Synergism between the distinct antioxidant functions was based on the rapid reaction of externally exposed Trolox (rate constant with peroxyl radicals was 1.1 × 106 M-1 s-1 and 9 × 104 M-1 s-1 respectively in chlorobenzene and acetonitrile, at 30 °C), followed by its regeneration by quercetin released from the HNT lumen. The advantages of this novel nanoantioxidant are discussed.

16.
J Colloid Interface Sci ; 461: 346-351, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26409004

RESUMO

Halloysite clay nanotubes were modified through the adsorption of poly(N-isopropylacrylamide)-amine terminated (PNIPA-NH2) onto the external surface by exploiting electrostatic interactions at pH=6. In spite the amount of attached polymer is rather low (1 wt%), the properties of the nanotubes are deeply modified. The apparent specific volume and isentropic compressibilities of the hybrid nanomaterial dispersed in water evidenced the transferring of the termosensitive property from the polymer to halloysite. The hydrodynamic radius as well as the ζ-potential of the nanohybrid are consistent with the attachment of a positively charged polymer onto the negative surface of the nanotube. The colloidal stability was strongly enhanced in the temperature domain below the lower critical solution temperature. This methodology endowed to obtain hollow nanotubes with a stimuli-responsive corona.

17.
Langmuir ; 31(27): 7472-8, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26119491

RESUMO

An easy strategy to obtain inorganic reverse micelles based on halloysite nanotubes (HNTs) and alkyltrimethylammonium bromides has been developed. The selective modification of the HNTs external surface with cationic surfactants endows to generate tubular nanostructures with a hydrophobic shell and a hydrophilic cavity. The influence of the surfactants alkyl chain on the HNTs functionalization degree has been investigated. The dynamic behavior of the surfactant/HNT hybrids in solvents with variable polarity has been correlated to their affinity toward hydrophobic media explored through partition experiments. The water-in-oil emulsion is able to solubilize copper sulfate, proving the incorporation and the loading of hydrophilic compounds into the HNTs lumen. Here we have fabricated ecocompatible reverse micelles with tunable hydrophobic/hydrophilic interface that might be suitable for industrial and biological applications as well as for selective organic synthesis.

18.
Int J Pharm ; 478(2): 476-85, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25498322

RESUMO

Halloysite nanotubes were explored as drug carrier for cardanol, which is considered as a promising natural anticancer active species. To this aim, besides the pristine nanoclay, a chemical modification of the nanocarrier was performed by attaching triazolium salts with different hydrophobicity at the outer surface of the hollow nanotubes. The interaction between cardanol and nanotubes was highlighted in solution by HPLC. This method proved the loading of the drug into the nanotubes. The solid dried complexes formed by pristine and modified halloysite with the cardanol were characterized by IR spectroscopy, thermogravimetric analysis as well as water contact angle to evidence the structure, thermal properties and wettability of the obtained materials. The kinetics of cardanol release as well as cell viability experiments provided promising results that put forward a new strategy for potential applications of cardanol as active antiproliferative molecule and clay nanotubes as drug carrier.


Assuntos
Silicatos de Alumínio/química , Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Nanotubos , Fenóis/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Argila , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Liberação Controlada de Fármacos , Humanos , Microscopia Eletrônica de Varredura , Nanotubos/química , Nanotubos/ultraestrutura , Fenóis/química , Fenóis/farmacologia , Triazóis/química
19.
J Colloid Interface Sci ; 417: 66-71, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24407660

RESUMO

Halloysite clay nanotubes were selectivity modified by adsorbing perfluoroalkylated anionic surfactants at the inner surface. The modified nanotubes formed kinetically stable dispersions due to the enhanced electrostatic repulsions exercised between the particles. We proved that the modified nanotubes can be used as non-foaming oxygen nanocontainers in aqueous media. The gas release from supersaturated dispersions can be controlled by external stimuli and system composition. In conclusion, we managed to put forward an easy strategy to develop smart materials from natural nanoclays, which can endow important applications like the storage and delivery of gas.

20.
ACS Appl Mater Interfaces ; 6(1): 606-12, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24328045

RESUMO

We prepared hybrid halloysite nanotubes (HNT/sodium alkanoates) in which the inner cavity of the nanoclay was selectively modified. Physicochemical studies evidenced the interactions between HNT and sodium alkanoates, ruled out clay exfoliation, quantified the amount of the loaded substance, and showed an increase of the total net negative charge, allowing us to obtain rather stable aqueous nanoclay dispersions. These dispersions were exploited as inorganic micelles to capture hydrocarbon and aromatic oils in the vapor and liquid states and were revealed to be nonfoaming but very efficient in encapsulating oils. Here, we have fabricated biocompatibile and low-cost inorganic micelles that can be exploited for industrial applications on a large scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...