Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2932, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217484

RESUMO

In nervous systems, retrograde signals are key for organizing circuit activity and maintaining neuronal homeostasis. We identify the conserved Allnighter (Aln) pseudokinase as a cell non-autonomous regulator of proteostasis responses necessary for normal sleep and structural plasticity of Drosophila photoreceptors. In aln mutants exposed to extended ambient light, proteostasis is dysregulated and photoreceptors develop striking, but reversible, dysmorphology. The aln gene is widely expressed in different neurons, but not photoreceptors. However, secreted Aln protein is retrogradely endocytosed by photoreceptors. Inhibition of photoreceptor synaptic release reduces Aln levels in lamina neurons, consistent with secreted Aln acting in a feedback loop. In addition, aln mutants exhibit reduced night time sleep, providing a molecular link between dysregulated proteostasis and sleep, two characteristics of ageing and neurodegenerative diseases.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Retroalimentação , Proteostase , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Sono/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
2.
EMBO J ; 40(12): e106412, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988249

RESUMO

The mammalian target of rapamycin complex 1 (mTORC1) integrates nutrients, growth factors, stress, and energy status to regulate cell growth and metabolism. Amino acids promote mTORC1 lysosomal localization and subsequent activation. However, the subcellular location or interacting proteins of mTORC1 under amino acid-deficient conditions is not completely understood. Here, we identify ADP-ribosylation factor GTPase-activating protein 1 (ArfGAP1) as a crucial regulator of mTORC1. ArfGAP1 interacts with mTORC1 in the absence of amino acids and inhibits mTORC1 lysosomal localization and activation. Mechanistically, the membrane curvature-sensing amphipathic lipid packing sensor (ALPS) motifs that bind to vesicle membranes are crucial for ArfGAP1 to interact with and regulate mTORC1 activity. Importantly, ArfGAP1 represses cell growth through mTORC1 and is an independent prognostic factor for the overall survival of pancreatic cancer patients. Our study identifies ArfGAP1 as a critical regulator of mTORC1 that functions by preventing the lysosomal transport and activation of mTORC1, with potential for cancer therapeutics.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Linhagem Celular , Feminino , Proteínas Ativadoras de GTPase/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Prognóstico
3.
J Biol Chem ; 295(18): 6214-6224, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32229585

RESUMO

The transfer of a phosphate from ATP to a protein substrate, a modification known as protein phosphorylation, is catalyzed by protein kinases. Protein kinases play a crucial role in virtually every cellular activity. Recent studies of atypical protein kinases have highlighted the structural similarity of the kinase superfamily despite notable differences in primary amino acid sequence. Here, using a bioinformatics screen, we searched for putative protein kinases in the intracellular bacterial pathogen Legionella pneumophila and identified the type 4 secretion system effector Lpg2603 as a remote member of the protein kinase superfamily. Employing an array of biochemical and structural biology approaches, including in vitro kinase assays and isothermal titration calorimetry, we show that Lpg2603 is an active protein kinase with several atypical structural features. Importantly, we found that the eukaryote-specific host signaling molecule inositol hexakisphosphate (IP6) is required for Lpg2603 kinase activity. Crystal structures of Lpg2603 in the apo-form and when bound to IP6 revealed an active-site rearrangement that allows for ATP binding and catalysis. Our results on the structure and activity of Lpg2603 reveal a unique mode of regulation of a protein kinase, provide the first example of a bacterial kinase that requires IP6 for its activation, and may aid future work on the function of this effector during Legionella pathogenesis.


Assuntos
Interações Hospedeiro-Patógeno , Legionella pneumophila/enzimologia , Ácido Fítico/farmacologia , Proteínas Quinases/metabolismo , Ativação Enzimática/efeitos dos fármacos , Legionella pneumophila/fisiologia , Modelos Moleculares , Conformação Proteica , Proteínas Quinases/química
4.
Cell ; 179(1): 205-218.e21, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31522888

RESUMO

The molecular chaperone HSP90 facilitates the folding of several client proteins, including innate immune receptors and protein kinases. HSP90 is an essential component of plant and animal immunity, yet pathogenic strategies that directly target the chaperone have not been described. Here, we identify the HopBF1 family of bacterial effectors as eukaryotic-specific HSP90 protein kinases. HopBF1 adopts a minimal protein kinase fold that is recognized by HSP90 as a host client. As a result, HopBF1 phosphorylates HSP90 to completely inhibit the chaperone's ATPase activity. We demonstrate that phosphorylation of HSP90 prevents activation of immune receptors that trigger the hypersensitive response in plants. Consequently, HopBF1-dependent phosphorylation of HSP90 is sufficient to induce severe disease symptoms in plants infected with the bacterial pathogen, Pseudomonas syringae. Collectively, our results uncover a family of bacterial effector kinases with toxin-like properties and reveal a previously unrecognized betrayal mechanism by which bacterial pathogens modulate host immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mimetismo Molecular/imunologia , Imunidade Vegetal/fisiologia , Adenosina Trifosfatases/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/química , Células HEK293 , Proteínas de Choque Térmico HSP90/química , Células HeLa , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Fosforilação , Plasmídeos/genética , Ligação Proteica , Dobramento de Proteína , Proteínas Quinases/metabolismo , Pseudomonas syringae/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
IUBMB Life ; 71(6): 749-759, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30941842

RESUMO

Previous decades have seen an explosion in our understanding of protein kinase function in human health and disease. Hundreds of unique kinase structures have been solved, allowing us to create generalized rules for catalysis, assign roles of communities within the catalytic core, and develop specific drugs for targeting various pathways. Although our understanding of intracellular kinases has developed at a fast rate, our exploration into extracellular kinases has just begun. In this review, we will cover the secreted protein kinase families found in humans, bacteria, and parasites. © 2019 IUBMB Life, 71(6):749-759, 2019.


Assuntos
Transporte Biológico/genética , Fosforilação/genética , Proteínas Quinases/genética , Animais , Bactérias/enzimologia , Humanos , Mamíferos/genética , Parasitos/enzimologia , Proteínas Quinases/classificação , Especificidade por Substrato
6.
Cell ; 175(3): 809-821.e19, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30270044

RESUMO

Approximately 10% of human protein kinases are believed to be inactive and named pseudokinases because they lack residues required for catalysis. Here, we show that the highly conserved pseudokinase selenoprotein-O (SelO) transfers AMP from ATP to Ser, Thr, and Tyr residues on protein substrates (AMPylation), uncovering a previously unrecognized activity for a member of the protein kinase superfamily. The crystal structure of a SelO homolog reveals a protein kinase-like fold with ATP flipped in the active site, thus providing a structural basis for catalysis. SelO pseudokinases localize to the mitochondria and AMPylate proteins involved in redox homeostasis. Consequently, SelO activity is necessary for the proper cellular response to oxidative stress. Our results suggest that AMPylation may be a more widespread post-translational modification than previously appreciated and that pseudokinases should be analyzed for alternative transferase activities.


Assuntos
Monofosfato de Adenosina/metabolismo , Domínio Catalítico , Processamento de Proteína Pós-Traducional , Selenoproteínas/metabolismo , Sequência Conservada , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Selenoproteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...