Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 10029, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31296948

RESUMO

The first 3-D direct observation of clusters of Nd oxide inside silicate glasses was achieved using atom probe tomography. Three-dimensional elemental maps of major chemical elements in glasses such as Si, Al, Zn and O showed no evidence of regions that had concentrations higher than the average values, whereas the Nd aggregated into regions of high concentration. Elemental maps of Nd and Pb recorded from the glasses containing PbS QDs showed highly-concentrated areas of both elements at the same locations; this result indicates that PbS QDs formation started in association with the Nd clusters.

2.
ACS Nano ; 13(6): 6513-6521, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31070885

RESUMO

An array of amorphous tin oxide (a-SnOx) nanohelixes (NHs) was fabricated on copper foil as an electrode for Na-ion batteries via the oblique angle deposition method, a solution- and surfactant-free process. The combination of the amorphous phase SnOx with a low oxidation number and its vertically aligned NH geometry with a large surface area and high porosity, which facilitate Na-ion dynamics and accommodate the volume changes, enabled a reversible capacity of up to 915 mA h g-1 after 50 cycles, fast rate capability with 48.1% retention at 2 A g-1, and high stability, which are superior to those of crystalline nanoparticle-based electrodes.

3.
ACS Nano ; 12(12): 12109-12117, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30474967

RESUMO

Synthesizing semiconductor nanoparticles through core/shell structuring is an effective strategy to promote the functional, physical, and kinetic performance of optoelectronic materials. However, elucidating the internal structure and related atomic distribution of core/shell structured quantum dots (QDs) in three dimensions, particularly at heterostructure interfaces, has been an overarching challenge. Herein, by applying complementary analytical techniques of electron microscopy and atom probe tomography, the dimensional, structural, topological, and compositional information on commercially available 11.8 nm-sized CdSSe/ZnS QDs were obtained. Systematic experiments at high resolution reveal the presence of a 1.8 nm-thick Cd xZn1 - xS inner shell with a composition gradient between the CdSe core and the ZnS outermost shell. More strikingly, the inner shell shows compositional variation because of competitive atomic configuration between Cd and ZnS, but it structurally retains a zinc-blende crystal structure with the core. The inner shell may grow through the decreased reactivity of S with Cd, followed by atomic diffusion-related processes. The composition-competitive gradient inner shell alleviates lattice misfit strain at heterostructure interfaces, thereby enhancing the quantum yield and photostabilty to a greater extent than those of other single-shell structures. Thus, this precise measurement approach could offer a potential pathway to develop a wide variety of three-dimensional core/shell-structured materials.

4.
Sci Rep ; 8(1): 11200, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30046047

RESUMO

The strengthening mechanism of the metallic material is related to the hindrance of the dislocation motion, and it is possible to achieve superior strength by maximizing these obstacles. In this study, the multiple strengthening mechanism-based nanostructured steel with high density of defects was fabricated using high-pressure torsion at room and elevated temperatures. By combining multiple strengthening mechanisms, we enhanced the strength of Fe-15 Mn-0.6C-1.5 Al steel to 2.6 GPa. We have found that solute segregation at grain boundaries achieves nanograined and nanotwinned structures with higher strength than the segregation-free counterparts. The importance of the use of multiple deformation mechanism suggests the development of a wide range of strong nanotwinned and nanostructured materials via severe plastic deformation process.

5.
J Nanosci Nanotechnol ; 18(9): 5868-5875, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677708

RESUMO

Radio-frequency plasma enhanced CVD (RF-PECVD) carbon films were grown directly on 4-inch 4H-SiC substrates as a capping layer for MOSFET device applications. An approximately 50-nm-thick CVD carbon capping layer was found to reduce the surface roughness, as determined by atomic force microscopy (AFM). The secondary ion mass spectroscopy (SIMS) depth profile results revealed that carbon capping layer can suppress the dopant out-diffusion on the implanted surface after annealing even at high temperature (1700 °C) for 30 min. The calculated subthreshold swing (S) values of devices with CVD carbon capping layer and photo-resist process (base) measured at room temperature were 460 ± 50 (mV/dec) and 770 ± 70 (mV/dec), respectively. The lower value of 'S' for the device with carbon capping layer was related to the very low density of interface traps at the SiC-SiO2 interface. These results show the potential of CVD carbon as a capping layer for SiC MOSFET device applications.

6.
ACS Appl Mater Interfaces ; 9(50): 44096-44105, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29181972

RESUMO

We investigated, for the first time, the conditions where a thermoplastic conductive composite can exhibit completely reversible stretchability at high elongational strains (ε = 1.8). We studied a composite of Au nanosheets and a polystyrene-block-polybutadiene-block-polystyrene block copolymer as an example. The composite had an outstandingly low sheet resistance (0.45 Ω/sq). We found that when a thin thermoplastic composite film is placed on a relatively thicker chemically cross-linked elastomer film, it can follow the reversible elastic behavior of the bottom elastomer. Such elasticity comes from the restoration of the block copolymer microstructure. The strong adhesion of the thermoplastic polymer to the metallic fillers is advantageous in the fabrication of mechanically robust, highly conductive, stretchable electrodes. The chemical stability of the Au composite was used to fabricate high luminescence, stretchable electrochemiluminescence displays with a conventional top-bottom electrode setup and with a horizontal electrode setup.

7.
Adv Mater ; 29(43)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28977713

RESUMO

Printing is one of the easy and quick ways to make a stretchable wearable electronics. Conventional printing methods deposit conductive materials "on" or "inside" a rubber substrate. The conductors made by such printing methods cannot be used as device electrodes because of the large surface topology, poor stretchability, or weak adhesion between the substrate and the conducting material. Here, a method is presented by which conductive materials are printed in the way of being surface-embedded in the rubber substrate; hence, the conductors can be widely used as device electrodes and circuits. The printing process involves a direct printing of a metal precursor solution in a block-copolymer rubber substrate and chemical reduction of the precursor into metal nanoparticles. The electrical conductivity and sensitivity to the mechanical deformation can be controlled by adjusting the number of printing operations. The fabrication of highly sensitive vibration sensors is thus presented, which can detect weak pulses and sound waves. In addition, this work takes advantage of the viscoelasticity of the composite conductor to fabricate highly conductive stretchable circuits for complicated 3D structures. The printed electrodes are also used to fabricate a stretchable electrochemiluminescence display.

8.
ACS Nano ; 11(7): 6586-6593, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28587467

RESUMO

Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter DB (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > DB (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than DB show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

9.
Adv Mater ; 29(30)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28605067

RESUMO

Creation of nanometer-scale conductive filaments in resistive switching devices makes them appealing for advanced electrical applications. While in situ electrical probing transmission electron microscopy promotes fundamental investigations of how the conductive filament comes into existence, it does not provide proof-of-principle observations for the filament growth. Here, using advanced microscopy techniques, electrical, 3D compositional, and structural information of the switching-induced conductive filament are described. It is found that during in situ probing microscopy of a Ag/TiO2 /Pt device showing both memory- and threshold-switching characteristics, a crystalline Ag-doped TiO2 forms at vacant sites on the device surface and acts as the conductive filament. More importantly, change in filament morphology varying with applied compliance currents determines the underlying switching mechanisms that govern either memory or threshold response. When focusing more on threshold switching features, it is demonstrated that the structural disappearance of the filament arises at the end of the constricted region and leads to the spontaneous phase transformation from crystalline conductive state into an initial amorphous insulator. Use of the proposed method enables a new pathway for observing nanosized features in a variety of devices at the atomic scale in three dimensions.

10.
Microsc Microanal ; 23(2): 329-335, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28215196

RESUMO

Two challenges exist in laser-assisted atom probe tomography (APT). First, a drastic decline in mass-resolving power is caused, not only by laser-induced thermal effects on the APT tips of bulk oxide materials, but also the associated asymmetric evaporation behavior; second, the field evaporation mechanisms of bulk oxide tips under laser illumination are still unclear due to the complex relations between laser pulse and oxide materials. In this study, both phenomena were investigated by depositing Ni- and Co-capping layers onto the bulk LaAlO3 tips, and using stepwise APT analysis with transmission electron microscopy (TEM) observation of the tip shapes. By employing the metallic capping, the heating at the surface of the oxide tips during APT analysis became more symmetrical, thereby enabling a high mass-resolving power in the mass spectrum. In addition, the stepwise microscopy technique visualized tip shape evolution during APT analysis, thereby accounting for evaporation sequences at the tip surface. The combination of "capping" and "stepwise APT with TEM," is applicable to any nonconductors; it provides a direct observation of tip shape evolution, allows determination of the field evaporation strength of oxides, and facilitates understanding of the effects of ultrafast laser illumination on an oxide tip.

11.
Small ; 13(14)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28160401

RESUMO

The control of solution-processed emitting layers in organic-based optoelectronic devices enables cost-effective processing and highly efficient properties. However, a solution-based protocol for emitter fabrication is highly complex, and the link between the device performance and internal nanoscale features as well as three associated fabricating parameters (e.g., the employed solvents, annealing temperatures, and molecular concentration) needs to be understood. Here, this study investigates the influence of the solution-processing parameters on the nanostructure-property relationship in light emitters that consist of iridium complexes doped in polymer. The boiling points and evaporation rates of the selected solvents govern the nanomorphology of molecular aggregation in the as-processed state, and the aggregation is either needle-like, spherical, or even a mixture of needles and spheres. Furthermore, a direct observation via in situ heating microscopy indicates that annealing of emitters containing a needle-type aggregation promotes the associated molecular transport, leading to a substantial reduction in the surface roughness. Consequently, a nearly threefold increase in the current efficiency of the device is induced. These findings have important implications for the tuning of the aggregation of iridium complexes for emitters used in the new evolution of high-performance organic-based optoelectronic devices.

12.
Adv Mater ; 28(28): 6019, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27442971

RESUMO

A synapse-emulating electronic device based on organometal halide perovskite thin films is described by T.-W. Lee and co-workers on page 5916. The device successfully emulates important characteristics of a biological synapse. This work extends the application of organometal halide perovskites to bioinspired electronic devices, and contributes to the development of neuromorphic electronics.

13.
Adv Mater ; 28(34): 7430-5, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27309997

RESUMO

Room-temperature multiferroism in LuFeO3 (LFO) films is demonstrated by exploiting the orthorhombic-hexagonal (o-h) morphotrophic phase coexistence. The LFO film further reveals a magnetoelectric coupling effect that is not shown in single-phase (h- or o-) LFO. The observed multiferroism is attributed to the combination of sufficient polarization from h-LFO and net magnetization from o-LFO.

14.
Adv Mater ; 28(28): 5916-22, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27167384

RESUMO

Organometal halide perovskite synaptic devices are fabricated; they emulate important working principles of a biological synapse, including excitatory postsynaptic current, paired-pulse facilitation, short-term plasticity, long-term plasticity, and spike-timing dependent plasticity. These properties originate from possible ion migration in the ion-rich perovskite matrix. This work has extensive applicability and practical significance in neuromorphic electronics.

15.
Phys Chem Chem Phys ; 17(33): 21555-63, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26220738

RESUMO

Understanding the mechanism responsible for the temperature-dependent performances of emitting layers is essential for developing advanced phosphorescent organic light emitting diodes. We described the morphological evolution occurring in PVK:Ir(ppy)3 binary blend films, with respect to thermal annealing up to 300 °C, by coupling atomic force microscopy and transmission electron microscopy. In particular, in situ temperature-dependent experimental characterization was performed to directly determine the overall sequence of morphological evolution occurring in the films. The device thermally annealed at 200 °C exhibits a noticeable enhancement in the performances, compared to the devices in the as-processed state and to the devices annealed at 300 °C. Our approaches reveal that the Ir(ppy)3 molecules, with a needle-like structure in the as-processed state, were aggregated, and thus diffused into PVK without a morphological change at the temperature regime between 150 °C and 200 °C. Moreover, both network-like and droplet patterns existed in the devices annealed at 300 °C, which was beyond the glass temperature of PVK, leading to a profound increase in the surface roughness. The observed pattern formation is discussed in terms of viscoelastic phase separation. Based on our experimental findings, we propose that the performances of the devices are significantly controlled by the diffusion of dopant molecules and the morphological evolution of the host materials in binary blend systems.

16.
Angew Chem Int Ed Engl ; 53(25): 6414-8, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24842492

RESUMO

A facile synthesis of highly stable, water-dispersible metal-nanoparticle-decorated polymer nanocapsules (M@CB-PNs: M=Pd, Au, and Pt) was achieved by a simple two-step process employing a polymer nanocapsule (CB-PN) made of cucurbit[6]uril (CB[6]) and metal salts. The CB-PN serves as a versatile platform where various metal nanoparticles with a controlled size can be introduced on the surface and stabilized to prepare new water-dispersible nanostructures useful for many applications. The Pd nanoparticles on CB-PN exhibit high stability and dispersibility in water as well as excellent catalytic activity and recyclability in carbon-carbon and carbon-nitrogen bond-forming reactions in aqueous medium suggesting potential applications as a green catalyst.

17.
Nat Chem ; 6(2): 97-103, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24451584

RESUMO

Despite the remarkable progress made in the self-assembly of nano- and microscale architectures with well-defined sizes and shapes, a self-organization-based synthesis of hollow toroids has, so far, proved to be elusive. Here, we report the synthesis of polymer microrings made from rectangular, flat and rigid-core monomers with anisotropically predisposed alkene groups, which are crosslinked with each other by dithiol linkers using thiol-ene photopolymerization. The resulting hollow toroidal structures are shape-persistent and mechanically robust in solution. In addition, their size can be tuned by controlling the initial monomer concentrations, an observation that is supported by a theoretical analysis. These hollow microrings can encapsulate guest molecules in the intratoroidal nanospace, and their peripheries can act as templates for circular arrays of metal nanoparticles.


Assuntos
Nanotubos/química , Polímeros/química , Alcenos/química , Antraquinonas/química , Fulerenos/química , Luz , Nanopartículas Metálicas/química , Modelos Teóricos , Nanotubos/ultraestrutura , Nanotubos de Carbono/química , Polimerização , Prata/química , Compostos de Sulfidrila/química
18.
Microsc Microanal ; 19 Suppl 5: 99-104, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23920184

RESUMO

In this paper, we have observed an atomic-scale structure and compositional variation at the interface of the InGaN/GaN multi-quantum wells (MQW) by both scanning transmission electron microscopy (STEM) using high-angle annular dark-field mode and atom probe tomography (APT). The iso-concentration analysis of APT results revealed that the roughness of InGaN/GaN interface increased as the MQW layers were filled up, and that the upper interface of MQW (GaN/InGaN to the p-GaN side) was much rougher than that of the lower interface (InGaN/GaN tot he n-GaN side). On the basis of experimental results, it is suggested that the formation of interface roughness can affect the quantum efficiency of InGaN-based light-emitting diodes.

19.
J Am Chem Soc ; 135(17): 6523-8, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23574044

RESUMO

The design and synthesis of two-dimensional (2D) polymers is a challenging task, hitherto achieved in solution only through the aid of a solid surface "template" or preorganization of the building blocks in a 2D confined space. We present a novel approach for synthesizing free-standing, covalently bonded, single-monomer-thick 2D polymers in solution without any preorganization of building blocks on solid surfaces or interfaces by employing shape-directed covalent self-assembly of rigid, disk-shaped building blocks having laterally predisposed reactive groups on their periphery. We demonstrate our strategy through a thiol-ene "click" reaction between (allyloxy)12CB[6], a cucurbit[6]uril (CB[6]) derivative with 12 laterally predisposed reactive alkene groups, and 1,2-ethanedithiol to synthesize a robust and readily transferable 2D polymer. We can take advantage of the high binding affinity of fully protonated spermine (positive charges on both ends) to CB[6] to keep each individual polymer sheet separated from one another by electrostatic repulsion during synthesis, obtaining, for the first-time ever, a single-monomer-thick 2D polymer in solution. The arrangement of CB[6] repeating units in the resulting 2D polymer has been characterized using gold nanoparticle labeling and scanning transmission electron microscopy. Furthermore, we have confirmed the generality of our synthetic approach by applying it to different monomers to generate 2D polymers. Novel 2D polymers, such as our CB[6] derived polymer, may be useful in selective transport, controlled drug delivery, and chemical sensing and may even serve as well-defined 2D scaffolds for ordered functionalization and platforms for bottom-up 3D construction.

20.
Nanoscale ; 5(10): 4351-4, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23567966

RESUMO

We investigated the in situ phase transition of the nanoscopic patterns on block copolymer thin films during nanoindentation by using a transmission electron microscope (TEM) with a specially designed nanoindenter. For the first time, we observed directly an in situ phase transition from lamellar microdomains to disordered states during the nanoindentation on a baroplastic polystyrene-block-poly(n-pentyl methacrylate) copolymer (PS-b-PnPMA) film. Through the in situ TEM observation, the mechanism of the nanoscopic pattern formation on a block copolymer thin film by indentation is fully understood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...