Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Genomics ; 45(11): 1357-1365, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37725269

RESUMO

BACKGROUND: TBC1 domain-containing kinase (TBCK) protein functions as a growth suppressor in certain cell types and as a tumor promoter in others. Although TBCK knockdown increases the responsiveness of cancer cells to anticancer drugs, the detailed mechanisms by which TBCK knockdown increases susceptibility to anticancer drugs remain unknown. OBJECTIVE: This study analyzed the role of TBCK in sensitivities to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and doxorubicin in human renal cancer cells. METHODS: Flow cytometry was employed to evaluate the extent of apoptosis. Western blotting, transient transfection, and lentiviral infection techniques were conducted to investigate the impact of TBCK on apoptosis-related protein expression and mitogen-activated protein kinase (MAPK). RESULTS: TBCK knockdown in renal cancer cells inhibits ERK and Akt signaling pathways and increases TRAIL and doxorubicin sensitivity. In TBCK-knockdown Caki-1 cells, ERK and Akt phosphorylation was suppressed compared to control cell lines, and TRAIL and doxorubicin sensitivities were increased in these cells. In addition, the phosphorylation of PDK1 was suppressed in TBCK-suppressed cells, indicating that TBCK may be involved in the PDK1 and Akt signaling pathways. The introduction of dominantly active Akt into TBCK-suppressed cells restored their sensitivity to TRAIL. In addition, TBCK downregulation enhanced TRAIL sensitivity in different renal cancer cell lines. CONCLUSIONS: These data suggest that TBCK could potentially have a crucial function in influencing the effects of anti-cancer drugs including TRAIL by modulating the signaling pathway involving Akt and PDK1 in human renal cancer cells.

2.
Tissue Eng Regen Med ; 20(4): 593-605, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37195569

RESUMO

BACKGROUND: Tissue engineering, including 3D bioprinting, holds great promise as a therapeutic tool for repairing cartilage defects. Mesenchymal stem cells have the potential to treat various fields due to their ability to differentiate into different cell types. The biomimetic substrate, such as scaffolds and hydrogels, is a crucial factor that affects cell behavior, and the mechanical properties of the substrate have been shown to impact differentiation during incubation. In this study, we examine the effect of the mechanical properties of the 3D printed scaffolds, made using different concentrations of cross-linker, on hMSCs differentiation towards chondrogenesis. METHODS: The 3D scaffold was fabricated using 3D bioprinting technology with gelatin/hyaluronic acid (HyA) biomaterial ink. Crosslinking was achieved by using different concentrations of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methlymorpholinium chloride n-hydrate (DMTMM), allowing for control of the scaffold's mechanical properties. The printability and stability were also evaluated based on the concentration of DMTMM used. The effects of the gelatin/HyA scaffold on chondrogenic differentiation was analyzed by utilizing various concentrations of DMTMM. RESULTS: The addition of HyA was found to improve the printability and stability of 3D printed gelatin/HyA scaffolds. The mechanical properties of the 3D gelatin/HyA scaffold could be regulated through the use of different concentrations of DMTMM cross-linker. In particular, the use of 0.25 mM DMTMM for crosslinking the 3D gelatin/HyA scaffold resulted in enhanced chondrocyte differentiation. CONCLUSION: The mechanical properties of 3D printed gelatin/HyA scaffolds cross-linked using various concentrations of DMTMM can influence the differentiation of hMSCs into chondrocytes.


Assuntos
Células-Tronco Mesenquimais , Alicerces Teciduais , Alicerces Teciduais/química , Gelatina/química , Ácido Hialurônico/farmacologia , Condrogênese , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Impressão Tridimensional
3.
Genes Genomics ; 43(10): 1199-1207, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34302634

RESUMO

BACKGROUND: Lactucin, a naturally occurring active sesquiterpene lactone, is abundantly found in chicory and romaine lettuce. A recent study reported that lactucin could induce apoptosis in leukemia cells. However, its cytotoxicity and potential molecular mechanisms underlying cancer cell death remain unclear. OBJECTIVE: Therefore, in this study, we aimed to investigate the direct effect and underlying mechanism of action of lactucin on renal cancer cells. METHODS: MTT assay and flow cytometry were performed to evaluate the rate of cell proliferation and apoptosis, respectively. Western blotting, reverse transcription polymerase chain reaction, and protein stability analyses were performed to analyze the effect of lactucin on the expression of apoptosis-related proteins such as B-cell lymphoma 2 (BCL-2) and CFLAR (CASP8 and FADD like apoptosis regulator) long isoform (CFLARL) in Caki-1 human renal cancer cells. In addition, reactive oxygen species (ROS) generation was evaluated using flow cytometry. RESULTS: Lactucin treatment induced apoptosis in Caki-1 cells in a dose-dependent manner via activation of the caspase pathway. It downregulated BCL-2 and CFLARL expression levels by suppressing BCL-2 transcription and CFLARL protein stability, respectively. Pretreatment with N-acetyl-1-cysteine, a ROS scavenger, attenuated the lactucin-induced apoptosis and restored the BCL-2 and CFLARL expression to basal levels. Lactucin-facilitated BCL-2 downregulation was regulated at the transcriptional level through the inactivation of the NF-κB pathway. CONCLUSIONS: Our study is the first to demonstrate that lactucin-induced apoptosis is mediated by ROS production, which in turn activates the caspase-dependent apoptotic pathway by inhibiting BCL-2 and CFLARL expression in Caki-1 cells.


Assuntos
Apoptose/efeitos dos fármacos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/biossíntese , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/metabolismo , Lactonas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/farmacologia , Linhagem Celular Tumoral , Humanos , Neoplasias Renais/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...