Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 20(5): 3042-3046, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31635646

RESUMO

The removal of heavy-metal ions from wastewater is an important objective from a public-health perspective, and chelating agents can be used to achieve this aim. Herein, we report the synthesis of mesoporous carbon as a chelating polymer host using nanoarchitectonics approach. Carboxymethylated polyethyleneimine, a chelating polymer, was incorporated into the mesopore walls of mesoporous carbon to create a polymer-mesoporous-carbon composite. Nitrogen adsorption- desorption experiments and scanning electron microscopy (SEM) were used to illustrate the structural advantages of the composite. Co2+ adsorption by the composite material was examined using cobalt nitrate solutions at pH 3. The study revealed that the Co2+-absorption data are most closely modeled by the Langmuir isotherm. The maximum adsorption capacity, calculated by linear regression, was determined to be about 40 mg-Co/g-composite at pH 3. The composite exhibited about a six-times higher adsorption capacity toward a dilute Co solution (12.5 ppm) than that of the pristine mesoporous carbon. In addition, the composite showed a substantially higher distribution coefficient (Kd = 1.54×105) compared to that (Kd = 2.05×10²) of the mesoporous carbon. Overall, we expect that the mesoporous composite, with its large mesopores (~20 nm), will be in high demand for adsorption applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA