Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(15): e2307190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009522

RESUMO

Electrochemiluminescence (ECL) holds significant promise for the development of cost-effective light-emitting devices because of its simple structure. However, conventional ECL devices (ECLDs) have a major limitation of short operational lifetimes, rendering them impractical for real-world applications. Typically, the luminescence of these devices lasts no longer than a few minutes during operation. In the current study, a novel architecture is provided for ECLDs that addresses this luminescence lifespan issue. The device architecture features an ECL active layer between two coplanar driving electrodes and a third floating bipolar electrode. The inclusion of the floating bipolar electrode enables modulating the electrical-field distribution within the active layer when a bias is applied between the driving electrodes. This, in turn, enables the use of opaque yet electrochemically stable noble metals as the driving electrodes while allowing ECL light to escape through the transparent floating bipolar electrode. A significant extension on operational lifetime is achieved, defined as the time required for the initial luminance (>100 cd m-2) to decrease by 50%, surpassing 1 h. This starkly contrasts the short lifetime (<1 min) attained by ECLDs in a conventional sandwich-type architecture with two transparent electrodes. These results provide simple strategies for developing durable ECL-based light-emitting devices.

2.
ACS Appl Mater Interfaces ; 13(11): 13541-13547, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33719404

RESUMO

Exploiting the long-range polarizability of an electrolyte based on ion migration, electric double-layer transistors (EDLTs) can be constructed in an unconventional configuration; here, the gate electrode is placed coplanarly with the device channel. In this paper, we demonstrate the influence of the distance factors of the electrolyte layer on the operation of EDLTs with a coplanar gate. As the promptness of the electric double-layer formation depends on the distance between the channel and the gate, the dynamic characteristics of a remote-gated transistor degrade with long distances. To suppress this degradation, we suggest using multiple coplanar floating gates bridged through ionic dielectric layers. Unlike remotely gated EDLTs that utilize a single extended electrolyte layer, the devices with multiple segmented electrolyte layers operate effectively even when they are gated from a distance longer than 1 mm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...