Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6317, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060314

RESUMO

Aerosol jet printing has the potential to fabricate fine features on various substrates due to its large stand-off distance. However, the presence of overspray and instability, particularly at high printing resolutions, has limited its widespread application. In this study, we introduce an efficient approach called annular acoustic focusing for aerosol jet printing. By determining the optimal focusing frequency (5.8 MHz) for silver nanoparticles using a particle ejection model, we achieve precise and stable printing. We also propose a modified print nozzle geometry, resulting in ultrafine traces (line width < 6 µm, overspray < 0.1 µm). Compared to printing without acoustic focusing, the line width of the traces decreases to 60 ± 5% while their conductivity increases to 180 ± 5%. Additionally, several 8 h experiments demonstrate excellent printing stability. This research opens up possibilities for the fabrication of conformal electronics with high precision and improved conductivity using aerosol jet printing.

2.
Sensors (Basel) ; 19(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370372

RESUMO

This paper proposes a self-calibration method that can be applied for multiple larger field-of-view (FOV) camera models on an advanced driver-assistance system (ADAS). Firstly, the proposed method performs a series of pre-processing steps such as edge detection, length thresholding, and edge grouping for the segregation of robust line candidates from the pool of initial distortion line segments. A novel straightness cost constraint with a cross-entropy loss was imposed on the selected line candidates, thereby exploiting that novel loss to optimize the lens-distortion parameters using the Levenberg-Marquardt (LM) optimization approach. The best-fit distortion parameters are used for the undistortion of an image frame, thereby employing various high-end vision-based tasks on the distortion-rectified frame. In this study, an investigation was carried out on experimental approaches such as parameter sharing between multiple camera systems and model-specific empirical γ -residual rectification factor. The quantitative comparisons were carried out between the proposed method and traditional OpenCV method as well as contemporary state-of-the-art self-calibration techniques on KITTI dataset with synthetically generated distortion ranges. Famous image consistency metrics such as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and position error in salient points estimation were employed for the performance evaluations. Finally, for a better performance validation of the proposed system on a real-time ADAS platform, a pragmatic approach of qualitative analysis has been conducted through streamlining high-end vision-based tasks such as object detection, localization, and mapping, and auto-parking on undistorted frames.

3.
Opt Express ; 25(24): 29885-29895, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29221024

RESUMO

We report the RF photonic reception and downconversion of vector modulated RF signals using a millimeter-wave coupled electrooptic phase modulator with in-plane slotted patch antennas based on SEO125 nonlinear polymer. We demonstrate experimental results with QPSK, 8-PSK, 16-QAM, 32-QAM, and 64-QAM millimeter-wave signals centered at 36 GHz. After downconversion to intermediate frequencies between 0.5 GHz and 2 GHz, the vector encoded signals are demodulated using an electrical signal analyzer and found to have measured error vector magnitudes below 8%. Design, simulation, fabrication, and experimental results are presented and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA