Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 176: 116762, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788597

RESUMO

Obesity is a multifaceted medical condition characterized by the pathological accumulation of excessive lipids in the body. We investigated the effects of morroniside, a bioactive compound derived from Cornus officinalis, on adipogenesis. We used a preadipocyte 3T3-L1 stable cell line and primary cultured adipose-derived stem cells (ADSCs) in vitro and ovariectomized (OVX) and a high-fat diet (HFD)-fed obese mouse model in vivo. Preadipocyte 3T3-L1 cells and ADSCs incubated with morroniside during adipocyte differentiation and obese mice subjected to OVX and HFD received oral morroniside treatment for 12 weeks. Morroniside treatment significantly reduced adipocyte differentiation and fatty acid accumulation and downregulated adipogenesis-related gene expression, concomitant with a decrease in triglyceride content and an increase in glycerol release in cells. The results of the in vivo study showed that morroniside ameliorated obesity-related phenotypes by reducing body weight gain, hepatic steatosis, and adipose tissue in obese mice. These findings suggest that morroniside is a promising compound for preventing and treating obesity.


Assuntos
Células 3T3-L1 , Adipogenia , Fármacos Antiobesidade , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Obesidade , Animais , Camundongos , Adipogenia/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Fármacos Antiobesidade/farmacologia , Feminino , Dieta Hiperlipídica/efeitos adversos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Glicosídeos/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Camundongos Obesos , Triglicerídeos/metabolismo , Ovariectomia , Fígado Gorduroso/tratamento farmacológico
2.
Biomed Pharmacother ; 176: 116799, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805969

RESUMO

BACKGROUND: The overstoring of surplus calories in mature adipocytes causes obesity and abnormal metabolic activity. The anti-obesity effect of a Celosia cristata (CC) total flower extract was assessed in vitro, using 3T3-L1 pre-adipocytes and mouse adipose-derived stem cells (ADSCs), and in vivo, using high-fat diet (HFD)-treated C57BL/6 male mice. METHODS: CC extract was co-incubated during adipogenesis in both 3T3-L1 cells and ADSCs. After differentiation, lipid droplets were assessed by oil red O staining, adipogenesis and lipolytic factors were evaluated, and intracellular triglyceride and glycerol concentrations were analyzed. For in vivo experiments, histomorphological analysis, mRNA expression levels of adipogenic and lipolytic factors in adipose tissue, blood plasma analysis, metabolic profiles were investigated. RESULTS: CC treatment significantly prevented adipocyte differentiation and lipid droplet accumulation, reducing adipogenesis-related factors and increasing lipolysis-related factors. Consequently, the intracellular triacylglycerol content was diminished, whereas the glycerol concentration in the cell supernatant increased. Mice fed an HFD supplemented with the CC extract exhibited decreased HFD-induced weight gain with metabolic abnormalities such as intrahepatic lipid accumulation and adipocyte hypertrophy. Improved glucose utilization and insulin sensitivity were observed, accompanied by the amelioration of metabolic disturbances, including alterations in liver enzymes and lipid profiles, in CC-treated mice. Moreover, the CC extract helped restore the disrupted energy metabolism induced by the HFD, based on a metabolic animal monitoring system. CONCLUSION: This study suggests that CC total flower extract is a potential natural herbal supplement for the prevention and management of obesity.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Fármacos Antiobesidade , Celosia , Dieta Hiperlipídica , Flores , Camundongos Endogâmicos C57BL , Obesidade , Extratos Vegetais , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Masculino , Camundongos , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/isolamento & purificação , Flores/química , Adipogenia/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Celosia/química , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos
3.
Nat Commun ; 14(1): 3668, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339951

RESUMO

Osteoporosis is a condition characterized by decreased bone mineral density (BMD) and reduced bone strength, leading to an increased risk of fractures. Here, to identify novel risk variants for susceptibility to osteoporosis-related traits, an exome-wide association study is performed with 6,485 exonic single nucleotide polymorphisms (SNPs) in 2,666 women of two Korean study cohorts. The rs2781 SNP in UBAP2 gene is suggestively associated with osteoporosis and BMD with p-values of 6.1 × 10-7 (odds ratio = 1.72) and 1.1 × 10-7 in the case-control and quantitative analyzes, respectively. Knockdown of Ubap2 in mouse cells decreases osteoblastogenesis and increases osteoclastogenesis, and knockdown of ubap2 in zebrafish reveals abnormal bone formation. Ubap2 expression is associated with E-cadherin (Cdh1) and Fra1 (Fosl1) expression in the osteclastogenesis-induced monocytes. UBAP2 mRNA levels are significantly reduced in bone marrow, but increased in peripheral blood, from women with osteoporosis compared to controls. UBAP2 protein level is correlated with the blood plasma level of the representative osteoporosis biomarker osteocalcin. These results suggest that UBAP2 has a critical role in bone homeostasis through the regulation of bone remodeling.


Assuntos
Fraturas Ósseas , Osteoporose , Animais , Feminino , Camundongos , Densidade Óssea/genética , Fraturas Ósseas/genética , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo , Peixe-Zebra
4.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902181

RESUMO

Obesity is characterized by the excessive accumulation of mature adipocytes that store surplus energy in the form of lipids. In this study, we investigated the inhibitory effects of loganin on adipogenesis in mouse preadipocyte 3T3-L1 cells and primary cultured adipose-derived stem cells (ADSCs) in vitro and in mice with ovariectomy (OVX)- and high-fat diet (HFD)-induced obesity in vivo. For an in vitro study, loganin was co-incubated during adipogenesis in both 3T3-L1 cells and ADSCs, lipid droplets were evaluated by oil red O staining, and adipogenesis-related factors were assessed by qRT-PCR. For in vivo studies, mouse models of OVX- and HFD-induced obesity were orally administered with loganin, body weight was measured, and hepatic steatosis and development of excessive fat were evaluated by histological analysis. Loganin treatment reduced adipocyte differentiation by accumulating lipid droplets through the downregulation of adipogenesis-related factors, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), perilipin 2 (Plin2), fatty acid synthase (Fasn), and sterol regulatory element binding transcription protein 1 (Srebp1). Loganin administration prevented weight gain in mouse models of obesity induced by OVX and HFD. Further, loganin inhibited metabolic abnormalities, such as hepatic steatosis and adipocyte enlargement, and increased the serum levels of leptin and insulin in both OVX- and HFD-induced obesity models. These results suggest that loganin is a potential candidate for preventing and treating obesity.


Assuntos
Adipogenia , Fármacos Antiobesidade , Iridoides , Animais , Camundongos , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , PPAR gama/metabolismo , Aumento de Peso , Iridoides/farmacologia
5.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430605

RESUMO

Osteoporosis is a disease caused by impaired bone remodeling that is especially prevalent in elderly and postmenopausal women. Although numerous chemical agents have been developed to prevent osteoporosis, arguments remain regarding their side effects. Here, we demonstrated the effects of loganin, a single bioactive compound isolated from Cornus officinalis, on osteoblast and osteoclast differentiation in vitro and on ovariectomy (OVX)-induced osteoporosis in mice in vivo. Loganin treatment increased the differentiation of mouse preosteoblast cells into osteoblasts and suppressed osteoclast differentiation in primary monocytes by regulating the mRNA expression levels of differentiation markers. Similar results were obtained in an osteoblast-osteoclast co-culture system, which showed that loganin enhanced alkaline phosphatase (ALP) activity and reduced TRAP activity. In in vivo experiments, the oral administration of loganin prevented the OVX-induced loss of bone mineral density (BMD) and microstructure in mice and improved bone parameters. In addition, loganin significantly increased the serum OPG/RANKL ratio and promoted osteogenic activity during bone remodeling. Our findings suggest that loganin could be used as an alternative treatment to protect against osteoporosis.


Assuntos
Osteogênese , Osteoporose , Feminino , Animais , Camundongos , Iridoides , Osteoblastos , Osteoporose/tratamento farmacológico
6.
Oxid Med Cell Longev ; 2022: 4122253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225173

RESUMO

Methods: Polyphenolic and iridoid constituents of extracts were analyzed qualitatively and quantitatively using the ultraperformance liquid chromatography system coupled with a quadrupole-time of flight mass spectrometry. Primary cultured osteoblasts isolated from mouse calvarias and osteoclast-lineage primary cultured monocytes isolated from mouse bone marrow were used for the assessment of osteoblast and osteoclast differentiation. In the osteoblast culture, cellular viability, alkaline phosphatase (ALP) activity, ALP staining, and mRNA expression of Alpl and Runx2 were examined. In the osteoclast culture, the examined parameters were cellular viability, tartrate-resistant acid phosphatase (TRAP) activity and staining, and mRNA expression of Nfatc1, Ctsk, and Acp. Results: A total of 41 main compounds of iridoids, anthocyanins, hydrolysable tannins, phenolic acids, and flavonols were identified in the three extracts. RED EXT1 contained most of the tested polyphenols and iridoids and was the only extract containing anthocyanins. YL EXT2 contained only one iridoid, loganic acid and gallic acid. YL EXT3 comprised a mixture of iridoids and polyphenols. RED EXT1, YL EXT 2, and to a lesser extent YL EXT3 promoted osteoblast differentiation increasing significantly ALP activity and the amount of ALP-positive stained cells. All extracts upregulated mRNA expression of Alpl and Runx2. RED EXT1 caused the most significant decrease in TRAP activity and the numbers of TRAP-positive multinucleated cells. RED EXT1 caused also the most significant downregulation of mRNA expression of osteoclast related genes Nfatc1, Ctsk, and Acp5. Extracts from yellow fruits, mostly YL EXT2 caused lower, but still significant inhibitory effect on TRAP and osteoclast related genes. Conclusions: The main conclusion of our study is that all three extracts, especially RED EXT1 from red cornelian cherry fruits, possess the antiosteoporotic potential and may be a promising phytomedicine candidate for the prevention and treatment of osteoporosis.


Assuntos
Cornus , Fosfatase Alcalina , Animais , Antocianinas/farmacologia , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core , Cornus/química , Flavonóis , Frutas/química , Ácido Gálico/análise , Iridoides/química , Iridoides/farmacologia , Camundongos , Osteoblastos , Osteoclastos , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Polifenóis/química , RNA Mensageiro , Taninos , Fosfatase Ácida Resistente a Tartarato/análise
7.
Medicina (Kaunas) ; 58(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35454305

RESUMO

Background and Objectives: Traditional herbal medicines are becoming more popular as a complementary medication as they have the advantages of being mostly harmless and safe, causing fewer side-effects than conventional medications. Here, we demonstrate the inhibitory effects of the combination of Ulmus davidiana (UD) and Cornus officinalis (CO) extracts on osteoporotic bone loss. Materials and Methods: This study presented osteogenic effects in primary cultured osteoblasts, pre-osteoblastic MC3T3-E1 cell lines, and osteoclastogenic effects in osteoclasts derived from bone marrow monocytes, and finally, protective effects on bone loss in an ovariectomy (OVX)-induced osteoporotic animal model. Results: A significant increase in alkaline phosphatase (ALP) activity was observed following treatment with UD and CO mixtures (8:2, 7:3, and 5:5 ratios) and individual UD and CO extracts, with the highest ALP activity being detected for the treatment with UD and CO extracts at a 5:5 ratio. An optimal ratio of UD and CO (UC) extract promoted osteoblast differentiation in both pre-osteoblastic cells and primary osteoblasts by increasing osteoblastic markers such as Alpl, Runx2, and Bglap. However, treatment with the UC extract inhibited osteoclast differentiation with a decreased expression of osteoclastogenesis-related genes, including Ctsk, Acp5, Mmp9, and Nfatc1. In addition, UC treatment prevented osteoporotic bone loss in OVX mice and improved impaired skeletal structure parameters. Conclusions: This study suggests that combined UD and CO extracts may be a beneficial traditional medicine for the prevention of postmenopausal osteoporosis.


Assuntos
Cornus , Osteoporose Pós-Menopausa , Ulmus , Animais , Diferenciação Celular , Feminino , Humanos , Camundongos , Osteoclastos , Osteoporose Pós-Menopausa/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ulmus/química
8.
Molecules ; 27(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268752

RESUMO

Ribes fasciculatum has been consumed as a food and as a traditional medicine for treating autoimmune diseases and aging in diverse countries. A previous study showed that a mixture of Ribes fasciculatum and Cornus officinalis prohibited adipocyte differentiation and lipid accumulation in preadipocytes and suppressed diet-induced obesity. Nevertheless, the mechanism of R. fasciculatum to regulate energy homeostasis solely through thermogenic signaling remains unclear. Thus, we investigated its effects on energy homeostasis using R. fasciculatum fed to C57BL/6 mice with a 45% high-fat diet. Chronic consumption of R. fasciculatum decreased the body weight of obese mice with increasing food intakes and improved metabolic-syndrome-related phenotypes. Therefore, we further tested its thermogenic effects. Cold chamber experiments and qPCR studies indicated that R. fasciculatum elevated thermogenic signaling pathways, demonstrated by increased body temperature and uncoupling protein 1 (UCP1) signaling in the white and brown adipose tissues. Afzelin is one major known compound derived from R. fasciculatum. Hence, the isolated compound afzelin was treated with preadipocytes and brown adipocytes for cell viability and luciferase assay, respectively, to further examine its thermogenic effect. The studies showed that the response of afzelin was responsible for cell viability and the increased UCP1. In conclusion, our data indicated that R. fasciculatum elevated peripheral thermogenic signaling through increased UCP1 via afzelin activation and ameliorated diet-induced obesity.


Assuntos
Dieta Hiperlipídica
9.
Antioxidants (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36670908

RESUMO

Osteoarthritis (OA) is the progressive destruction of articular cartilage with severe symptoms, including pain and stiffness. We investigated the anti-osteoarthritic effects of Prunella vulgaris (PV) and Gentiana lutea (GL) extract in primary cultured chondrocytes RAW 264.7 cells in vitro and destabilization of the medial meniscus (DMM)-induced OA mice in vivo. Primary chondrocytes were induced with IL-1ß, and RAW 264.7 cells were treated with LPS and co-incubated with either individual extracts of PV and GL or different ratios of PV and GL mixture. For the OA animal model, the medial meniscus (DMM) was destabilized in 9-week-old male C57BL/6 mice. Treatment of individual PV and GL and combination of PV and GL extracts inhibited the mRNA expression level of COX2 in chondrocytes and RAW 264.7 cells. The optimized inhibitory effect was attained with a PV and GL combination at an 8:2 ratio (PG) without cytotoxic effects. PG extracts prevented the expression of catabolic factors (COX2, Mmp3, Mmp9, and Mmp13) and inflammatory mediator levels (PGE2 and collagenase). In addition, PG decreased subchondral sclerosis and increased BMD in the subchondral region of DMM-induced OA mice with protection of articular cartilage destruction by inhibiting inflammatory processes. This study suggests that PG may be an alternative medicinal herb for treatment of OA.

10.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948100

RESUMO

Neurofibromatosis type 1 (NF1) is an autosomal dominant human genetic disorder. The progression of benign plexiform neurofibromas to malignant peripheral nerve sheet tumors (MPNSTs) is a major cause of mortality in patients with NF1. Although elevated epidermal growth factor receptor (EGFR) expression plays a crucial role in the pathogenesis of MPNST, the cause of EGFR overexpression remains unclear. Here, we assessed EGFR expression levels in MPNST tissues of NF1 patients and NF1 patient-derived MPNST cells. We found that the expression of EGFR was upregulated in MPNST tissues and MPNST cells, while the expression of neurofibromin was significantly decreased. Manipulation of NF1 expression by NF1 siRNA treatment or NF1-GAP-related domain overexpression demonstrated that EGFR expression levels were closely and inversely correlated with neurofibromin levels. Notably, knockdown of the NF1 gene by siRNA treatment augmented the nuclear localization of phosphorylated SP1 (pSP1) and enhanced pSP1 binding to the EGFR gene promoter region. Our results suggest that neurofibromin deficiency in NF1-associated MPNSTs enhances the Ras/ERK/SP1 signaling pathway, which in turn may lead to the upregulation of EGFR expression. This study provides insight into the progression of benign tumors and novel therapeutic approaches for treatment of NF1-associated MPNSTs.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Neurofibromatose 1/metabolismo , Neurofibromina 1/metabolismo , Fator de Transcrição Sp1/metabolismo , Regulação para Cima , Proteínas ras/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/biossíntese , Receptores ErbB/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Neurofibromatose 1/genética , Neurofibromina 1/genética , Fator de Transcrição Sp1/genética , Proteínas ras/genética
11.
Animals (Basel) ; 11(11)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34827919

RESUMO

Medicinal plants are widely used as supplements for the treatment of various diseases because of their few side-effects. Here, we examined the anti-obesity effects of a mixture extract of Cornus officinalis and Ribes fasciculatum (CR) in high-fat diet (HFD)-induced obese male mice. Four week old male C57BL/6J mice were fed a normal diet (ND) or 60% high-fat diet (HFD) with different concentrations of CR extracts (75, 150, and 300 mg/kg/day) by oral administration for 12 weeks. CR extract administration prevented HFD-induced weight gain, hepatic steatosis, and adipocyte enlargement through the downregulation of adipogenesis-associated genes in obese male mice. In addition, CR administration improved the impaired glucose metabolism, insulin action, biochemical obesity parameters, and metabolic profiles in HFD-induced male mice. Consequently, the CR extract exhibited beneficial effects on HFD-induced systemic metabolic challenges. Taken together, our findings suggest that CR extract may be a potent therapeutic supplement for the treatment and prevention of obesity.

12.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638983

RESUMO

Bone remodeling is a continuous process of bone synthesis and destruction that is regulated by osteoblasts and osteoclasts. Here, we investigated the anti-osteoporotic effects of morroniside in mouse preosteoblast MC3T3-E1 cells and mouse primary cultured osteoblasts and osteoclasts in vitro and ovariectomy (OVX)-induced mouse osteoporosis in vivo. Morroniside treatment enhanced alkaline phosphatase activity and positively stained cells via upregulation of osteoblastogenesis-associated genes in MC3T3-E1 cell lines and primary cultured osteoblasts. However, morroniside inhibited tartrate-resistant acid phosphatase activity and TRAP-stained multinucleated positive cells via downregulation of osteoclast-mediated genes in primary cultured monocytes. In the osteoporotic animal model, ovariectomized (OVX) mice were administered morroniside (2 or 10 mg/kg/day) for 12 weeks. Morroniside prevented OVX-induced bone mineral density (BMD) loss and reduced bone structural compartment loss in the micro-CT images. Taken together, morroniside promoted increased osteoblast differentiation and decreased osteoclast differentiation in cells, and consequently inhibited OVX-induced osteoporotic pathogenesis in mice. This study suggests that morroniside may be a potent therapeutic single compound for the prevention of osteoporosis.


Assuntos
Conservadores da Densidade Óssea/administração & dosagem , Diferenciação Celular/efeitos dos fármacos , Cornus/química , Glicosídeos/administração & dosagem , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/etiologia , Osteoporose/terapia , Ovariectomia/efeitos adversos , Fitoterapia/métodos , Extratos Vegetais/administração & dosagem , Animais , Densidade Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos ICR , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteoporose/metabolismo
13.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804203

RESUMO

Osteoarthritis (OA) is a common degenerative disease that results in joint inflammation as well as pain and stiffness. A previous study has reported that Cornus officinalis (CO) extract inhibits oxidant activities and oxidative stress in RAW 264.7 cells. In the present study, we isolated bioactive compound(s) by fractionating the CO extract to elucidate its antiosteoarthritic effects. A single bioactive component, morroniside, was identified as a potential candidate. The CO extract and morroniside exhibited antiosteoarthritic effects by downregulating factors associated with cartilage degradation, including cyclooxygenase-2 (Cox-2), matrix metalloproteinase 3 (Mmp-3), and matrix metalloproteinase 13 (Mmp-13), in interleukin-1 beta (IL-1ß)-induced chondrocytes. Furthermore, morroniside prevented prostaglandin E2 (PGE2) and collagenase secretion in IL-1ß-induced chondrocytes. In the destabilization of the medial meniscus (DMM)-induced mouse osteoarthritic model, morroniside administration attenuated cartilage destruction by decreasing expression of inflammatory mediators, such as Cox-2, Mmp3, and Mmp13, in the articular cartilage. Transverse microcomputed tomography analysis revealed that morroniside reduced DMM-induced sclerosis in the subchondral bone plate. These findings suggest that morroniside may be a potential protective bioactive compound against OA pathogenesis.


Assuntos
Cornus/química , Glicosídeos/farmacologia , Inflamação/tratamento farmacológico , Meniscos Tibiais/efeitos dos fármacos , Osteoartrite/tratamento farmacológico , Animais , Cartilagem Articular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Dinoprostona/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosídeos/química , Humanos , Interleucina-1beta/genética , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 3 da Matriz/genética , Meniscos Tibiais/patologia , Meniscos Tibiais/cirurgia , Camundongos , Osteoartrite/genética , Osteoartrite/patologia , Osteoartrite/cirurgia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Cultura Primária de Células , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
14.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567513

RESUMO

Arthritis is a common inflammatory disease that causes pain, stiffness, and joint swelling. Here, we investigated the ameliorative effects of loganin on arthritis in vitro and in vivo. A single bioactive compound was fractionated and isolated from Cornus officinalis (CO) extract to screen for anti-arthritic effects. A single component, loganin, was identified as a candidate. The CO extract and loganin inhibited the expression of factors associated with cartilage degradation, such as cyclooxygenase-2 (COX-2), matrix metalloproteinase 3 (MMP-3), and matrix metalloproteinase 13 (MMP-13), in interukin-1 beta (IL-1ß)-induced chondrocyte inflammation. In addition, prostaglandin and collagenase levels were reduced following treatment of IL-1ß-induced chondrocytes with loganin. In the destabilization of the medial meniscus (DMM)-induced mouse model, loganin administration attenuated cartilage degeneration by inhibiting COX-2, MMP-3, and MMP-13. Transverse micro-CT images revealed that loganin reduced DMM-induced osteophyte formation. These results indicate that loganin has protective effects in DMM-induced mice.

15.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379387

RESUMO

Osteoporosis is a common disease caused by an imbalance of processes between bone resorption by osteoclasts and bone formation by osteoblasts in postmenopausal women. The roots of Gentiana lutea L. (GL) are reported to have beneficial effects on various human diseases related to liver functions and gastrointestinal motility, as well as on arthritis. Here, we fractionated and isolated bioactive constituent(s) responsible for anti-osteoporotic effects of GL root extract. A single phytochemical compound, loganic acid, was identified as a candidate osteoprotective agent. Its anti-osteoporotic effects were examined in vitro and in vivo. Treatment with loganic acid significantly increased osteoblastic differentiation in preosteoblast MC3T3-E1 cells by promoting alkaline phosphatase activity and increasing mRNA expression levels of bone metabolic markers such as Alpl, Bglap, and Sp7. However, loganic acid inhibited osteoclast differentiation of primary-cultured monocytes derived from mouse bone marrow. For in vivo experiments, the effect of loganic acid on ovariectomized (OVX) mice was examined for 12 weeks. Loganic acid prevented OVX-induced bone mineral density loss and improved bone structural properties in osteoporotic model mice. These results suggest that loganic acid may be a potential therapeutic candidate for treatment of osteoporosis.


Assuntos
Iridoides/farmacologia , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoporose/patologia , Substâncias Protetoras/farmacologia , Administração Oral , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Gentiana/química , Iridoides/administração & dosagem , Iridoides/química , Iridoides/isolamento & purificação , Camundongos , Osteoblastos/patologia , Osteoclastos/patologia , Ovariectomia , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Espectroscopia de Prótons por Ressonância Magnética
16.
J Clin Med ; 9(11)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187261

RESUMO

Obesity is a medical condition that presents excessive fat accumulation with high risk of serious chronic diseases. The aim of this clinical trial is to investigate the anti-obesity effects of Cornus officinalis (CO) and Ribes fasciculatum (RF) on body fat reduction in Korean overweight women. A total of 147 overweight female participants enrolled in double-blinded clinical trial for 12 weeks and 76 participants completed the clinical study. Participants were treated with four CO and RF mixture (COEC; 400 mg per tablet) or four placebo tablets once a day. Obesity associated parameters (body weight, body mass index (BMI), waist circumference, waist-to-hip ratio, body fat percentage and body fat mass) and safety assessment were analyzed. After 12 weeks of COEC treatment, primary outcomes such as body fat percentage (0.76% vs. 0.01%; p = 0.022) and mass (1.1 kg vs. 0.5 kg; p = 0.049) were significantly decreased. In addition, the results were statistically significant between the COEC and placebo groups, strongly indicated that COEC had anti-obesity effects on overweight women. Secondary outcomes-including body weight, waist and hip circumference, waist-to-hip ratio, body mass index and computed tomography measurement of visceral fat area, subcutaneous fat area, total abdominal fat area and visceral-to-subcutaneous fat ratio-were reduced in COEC-treated group, but no statistical differences were found between the COEC and placebo groups. The safety assessment did not differ between the two groups. These results suggest that treatment of COEC extract reduces body fat percentage and mass in Korean overweight women, indicating it as a protective functional agent for obesity.

17.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218042

RESUMO

Obesity is prevalent in modern human societies. We examined the anti-obesity effects of scopolin on adipocyte differentiation in preadipocyte 3T3-L1 cells and weight loss in an ovariectomy (OVX)-induced obese mouse model. Scopolin inhibited adipocyte differentiation and lipid accumulation in the preadipocyte cells by suppressing the transcription of adipogenic-related factors, including adiponectin (Adipoq), peroxisome proliferator-activated receptor gamma (Pparg), lipoprotein lipase (Lpl), perilipin1 (Plin1), fatty acid-binding protein 4 (Fabp4), glucose transporter type 4 (Slc2a4), and CCAAT/enhancer-binding protein alpha (Cebpa). In OVX-induced obese mice, administration of scopolin promoted the reduction of body weight, total fat percentage, liver steatosis, and adipose cell size. In addition, the scopolin-treated OVX mice showed decreased serum levels of leptin and insulin. Taken together, these findings suggest that the use of scopolin prevented adipocyte differentiation and weight gain in vitro and in vivo, indicating that scopolin may be a potential bioactive compound for the treatment and prevention of obesity in humans.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Cumarínicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucosídeos/farmacologia , Obesidade , Ovariectomia , Transcrição Gênica/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/patologia , Animais , Feminino , Camundongos , Obesidade/metabolismo , Obesidade/patologia , Obesidade/prevenção & controle
18.
Nutrients ; 12(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233714

RESUMO

Bone remodeling is a renewal process regulated by bone synthesis (osteoblasts) and bone destruction (osteoclasts). A previous study demonstrated that Lycii radicis cortex (LRC) extract inhibited ovariectomized (OVX)-induced bone loss in mice. This study investigated the anti-osteoporotic effects of bioactive constituent(s) from the LRC extract. The effective compound(s) were screened, and a single compound, scopolin, which acts as a phytoalexin, was chosen as a candidate component. Scopolin treatment enhanced alkaline phosphatase activity and increased mineralized nodule formation in MC3T3-E1 pre-osteoblastic cells. However, osteoclast differentiation in primary-cultured monocytes was reduced by treatment with scopolin. Consistently, scopolin treatment increased osteoblast differentiation in the co-culture of monocytes (osteoclasts) and MC3T3-E1 (osteoblast) cells. Scopolin treatment prevented bone mineral density loss in OVX-induced osteoporotic mice. These results suggest that scopolin could be a therapeutic bioactive constituent for the treatment and prevention of osteoporosis.


Assuntos
Cumarínicos/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Glucosídeos/uso terapêutico , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Células 3T3 , Animais , Densidade Óssea/efeitos dos fármacos , Diferenciação Celular , Cumarínicos/farmacologia , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Feminino , Glucosídeos/farmacologia , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos
19.
Plants (Basel) ; 9(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872183

RESUMO

Osteoporosis is a porous bone disease caused by bone density loss, which increases the risk of fractures. Cornus officinalis (CO) and Achyranthes japonica (AJ) have been used as traditional herbal medicine for various disorders in East Asia. Although the anti-osteoporotic effects of single extract of CO and AJ have already been reported, the synergistic effect of a combined mixture has not been studied. In this study, we investigated the effects of a CO and AJ herbal mixture on osteoporosis in in vitro and in vivo models. The results demonstrate that treatment with the CO and AJ mixture significantly promoted osteoblast differentiation of MC3T3-E1 mouse preosteoblasts through the upregulation of osteoblastic differentiation-associated genes such as alkaline phosphatase (Alpl), runt-related transcription factor 2 (Runx2), and bone gamma-carboxyglutamic acid-containing protein (Bglap), while the mixture significantly inhibited differentiation of osteoclasts isolated from primary-cultured mouse monocytes. In addition, oral administration of CO and AJ mixture significantly prevented bone mineral density loss and trabecular bone structures in an ovariectomy-induced osteoporotic mouse model. These results suggest that the combination treatment of CO and AJ mixture might be a beneficial therapy for osteoporosis.

20.
Molecules ; 25(10)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466183

RESUMO

Obesity is one of the most common metabolic diseases resulting in metabolic syndrome. In this study, we investigated the antiobesity effect of Gentiana lutea L. (GL) extract on 3T3-L1 preadipocytes and a high-fat-diet (HFD)-induced mouse model. For the induction of preadipocytes into adipocytes, 3T3-L1 cells were induced by treatment with 0.5 mM 3-isobutyl-1-methylxanthine, 1 mM dexamethasone, and 1 µg/mL insulin. Adipogenesis was assessed based on the messenger ribonucleic acid expression of adipogenic-inducing genes (adiponectin (Adipoq), CCAAT/enhancer-binding protein alpha (Cebpa), and glucose transporter type 4 (Slc2a4)) and lipid accumulation in the differentiated adipocytes was visualized by Oil Red O staining. In vivo, obese mice were induced with HFD and coadministered with 100 or 200 mg/kg/day of GL extract for 12 weeks. GL extract treatment inhibited adipocyte differentiation by downregulating the expression of adipogenic-related genes in 3T3-L1 cells. In the obese mouse model, GL extract prevented HFD-induced weight gain, fatty hepatocyte deposition, and adipocyte size by decreasing the secretion of leptin and insulin. In conclusion, GL extract shows antiobesity effects in vitro and in vivo, suggesting that this extract can be beneficial in the prevention of obesity.


Assuntos
Adipócitos/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Gentiana/química , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , 1-Metil-3-Isobutilxantina/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Adipócitos/patologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Adiponectina/genética , Adiponectina/metabolismo , Animais , Fármacos Antiobesidade/isolamento & purificação , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Dexametasona/farmacologia , Dieta Hiperlipídica , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Leptina/genética , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Obesidade/genética , Obesidade/metabolismo , Extratos Vegetais/isolamento & purificação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...