Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800286

RESUMO

Developing high performance, highly stable, and low-cost electrodes for the oxygen evolution reaction (OER) is challenging in water electrolysis technology. However, Ir- and Ru-based OER catalysts with high OER efficiency are difficult to commercialize as precious metal-based catalysts. Therefore, the study of OER catalysts, which are replaced by non-precious metals and have high activity and stability, are necessary. In this study, a copper-cobalt oxide nanosheet (CCO) electrode was synthesized by the electrodeposition of copper-cobalt hydroxide (CCOH) on Ni foam followed by annealing. The CCOH was annealed at various temperatures, and the structure changed to that of CCO at temperatures above 250 °C. In addition, it was observed that the nanosheets agglomerated when annealed at 300 °C. The CCO electrode annealed at 250 °C had a high surface area and efficient electron conduction pathways as a result of the direct growth on the Ni foam. Thus, the prepared CCO electrode exhibited enhanced OER activity (1.6 V at 261 mA/cm2) compared to those of CCOH (1.6 V at 144 mA/cm2), Co3O4 (1.6 V at 39 mA/cm2), and commercial IrO2 (1.6 V at 14 mA/cm2) electrodes. The optimized catalyst also showed high activity and stability under high pH conditions, demonstrating its potential as a low cost, highly efficient OER electrode material.

2.
Sci Rep ; 7(1): 7150, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28769087

RESUMO

Ruthenium oxide (RuO2) is the best oxygen evolution reaction (OER) electrocatalyst. Herein, we demonstrated that RuO2 can be also efficiently used as an oxygen reduction reaction (ORR) electrocatalyst, thereby serving as a bifunctional material for rechargeable Zn-air batteries. We found two forms of RuO2 (i.e. hydrous and anhydrous, respectively h-RuO2 and ah-RuO2) to show different ORR and OER electrocatalytic characteristics. Thus, h-RuO2 required large ORR overpotentials, although it completed the ORR via a 4e process. In contrast, h-RuO2 triggered the OER at lower overpotentials at the expense of showing very unstable electrocatalytic activity. To capitalize on the advantages of h-RuO2 while improving its drawbacks, we designed a unique structure (RuO2@C) where h-RuO2 nanoparticles were embedded in a carbon matrix. A double hydrophilic block copolymer-templated ruthenium precursor was transformed into RuO2 nanoparticles upon formation of the carbon matrix via annealing. The carbon matrix allowed overcoming the limitations of h-RuO2 by improving its poor conductivity and protecting the catalyst from dissolution during OER. The bifunctional RuO2@C catalyst demonstrated a very low potential gap (ΔE OER-ORR = ca. 1.0 V) at 20 mA cm-2. The Zn||RuO2@C cell showed an excellent stability (i.e. no overpotential was observed after more than 40 h).

3.
Angew Chem Int Ed Engl ; 54(52): 15730-3, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26568300

RESUMO

The electric conductivity-dependence of the number of electrons transferred during the oxygen reduction reaction is presented. Intensive properties, such as the number of electrons transferred, are difficult to be considered conductivity-dependent. Four different perovskite oxide catalysts of different conductivities were investigated with varying carbon contents. More conductive environments surrounding active sites, achieved by more conductive catalysts (providing internal electric pathways) or higher carbon content (providing external electric pathways), resulted in higher number of electrons transferred toward more complete 4e reduction of oxygen, and also changed the rate-determining steps from two-step 2e process to a single-step 1e process. Experimental evidence of the conductivity dependency was described by a microscopic ohmic polarization model based on effective potential localized nearby the active sites.

4.
Curr Microbiol ; 71(1): 70-5, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25941023

RESUMO

Sanitizing effect of ethanol on a Yersinia enterocolitica biofilm was evaluated in terms of biomass removal and bactericidal activity. We found that 40 % ethanol was most effective for biofilm biomass removal; however, no significant difference was observed in bactericidal activity between treatment with 40 and 70 % ethanol. This unexpected low ethanol concentration requirement for biomass removal was confirmed using biofilms of two additional pathogenic bacteria, Aeromonas hydrophila and Xanthomonas oryzae. Although only three pathogenic Gram-negative bacteria were tested and the biofilm in nature was different from the biofilm in this study, the results in this study suggested the possible re-evaluation of the effective sanitizing ethanol concentration 70 %, which is the concentration commonly employed for sanitization, on bacteria in a biofilm.


Assuntos
Aeromonas hydrophila/fisiologia , Biofilmes/efeitos dos fármacos , Desinfetantes/farmacologia , Etanol/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Xanthomonas/fisiologia , Yersinia enterocolitica/fisiologia , Aeromonas hydrophila/efeitos dos fármacos , Xanthomonas/efeitos dos fármacos , Yersinia enterocolitica/efeitos dos fármacos
5.
ACS Appl Mater Interfaces ; 6(15): 12789-97, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24988178

RESUMO

Rapid growth of mobile and even wearable electronics is in pursuit of high-energy-density lithium-ion batteries. One simple and facile way to achieve this goal is the elimination of nonelectroactive components of electrodes such as binders and conductive agents. Here, we present a new concept of monocomponent electrodes comprising solely electroactive materials that are wrapped with an insignificant amount (less than 0.4 wt %) of conducting polymer (PEDOT:PSS or poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate)). The PEDOT:PSS as an ultraskinny surface layer on electroactive materials (LiCoO2 (LCO) powders are chosen as a model system to explore feasibility of this new concept) successfully acts as a kind of binder as well as mixed (both electrically and ionically) conductive film, playing a key role in enabling the monocomponent electrode. The electric conductivity of the monocomponent LCO cathode is controlled by simply varying the PSS content and also the structural conformation (benzoid-favoring coil structure and quinoid-favoring linear or extended coil structure) of PEDOT in the PEDOT:PSS skin. Notably, a substantial increase in the mass-loading density of the LCO cathode is realized with the PEDOT:PSS skin without sacrificing electronic/ionic transport pathways. We envisage that the PEDOT:PSS-skinned electrode strategy opens a scalable and versatile route for making practically meaningful binder-/conductive agent-free (monocomponent) electrodes.

6.
Angew Chem Int Ed Engl ; 53(20): 5059-63, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24706561

RESUMO

By coating nanoparticular lithium manganese oxide (LMO) spinel with a few layers of graphitic basal planes, the capacity of the material reached up to 220 mA h g(-1) at a cutoff voltage of 2.5 V. The graphitic layers 1) provided a facile electron-transfer highway without hindering ion access and, more interestingly, 2) stabilized the structural distortion at the 3 V region reaction. The gain was won by a simple method in which microsized LMO was ball-milled in the presence of graphite with high energy. Vibratory ball milling pulverized the LMO into the nanoscale, exfoliated graphite of less than 10 layers and combined them together with an extremely intimate contact. Ab initio calculations show that the intrinsically very low electrical conductivity of the tetragonal phase of the LMO is responsible for the poor electrochemical performance in the 3 V region and could be overcome by the graphitic skin strategy proposed.

7.
Phys Chem Chem Phys ; 16(11): 5295-300, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24496407

RESUMO

A 1D organic redox-active material is combined with another 1D conductive material for rechargeable batteries. Poly(vinyl carbazole) (or PVK) and poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (or PEDOT:PSS) are used as the redox-active and conductive 1D materials, respectively. Due to their extremely anisotropic geometry, the two polymers are expected to be inter-tangled with each other, showing a kinetically ideal model system in which each redox-active moiety of PVK is supposed to be directly connected with the conducting pathways of PEDOT:PSS. In addition to its role as a conductive agent providing kinetic benefits, PEDOT:PSS works as an efficient binder that guarantees enhanced electrochemical performances with only a tenth of the amount of a conventional binder (polyvinylidene fluoride or PVdF). The benefit of gravimetric energy density gain obtained using the conductive binder comes mainly from efficient spatial coverage of binding volume due to the low density of PEDOT:PSS. Towards realizing flexible all-polymer batteries, a quasi-all-polymer battery half-cell is designed using the PVK/PEDOT:PSS composite with a polymer gel electrolyte.

8.
Sci Rep ; 3: 2454, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23949091

RESUMO

Electric conductivity of conducting polymers has been steadily enhanced towards a level worthy of being called its alias, "synthetic metal". PEDOT:PSS (poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate)), as a representative conducting polymer, recently reached around 3,000 S cm(-1), the value to open the possibility to replace transparent conductive oxides. The leading strategy to drive the conductivity increase is solvent annealing in which aqueous solution of PEDOT:PSS is treated with an assistant solvent such as DMSO (dimethyl sulfoxide). In addition to the conductivity enhancement, we found that the potential range in which PEDOT:PSS is conductive is tuned wider into a negative potential direction by the DMSO-annealing. Also, the increase in a redox-active fraction of charge carriers is proposed to be responsible for the enhancement of conductivity in the solvent annealing process.


Assuntos
Dimetil Sulfóxido/química , Poliestirenos/química , Tiofenos/química , Condutividade Elétrica , Transporte de Elétrons , Dureza , Teste de Materiais , Oxirredução
9.
ACS Nano ; 6(12): 10770-5, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23189955

RESUMO

As high rate charge and discharge characteristics of energy storage devices become more important with the market of electric vehicles intensively growing, the kinetics of lithiation or delithiation of electrode materials for lithium ion batteries require enhancement. Graphites, the most widely used anode materials, have a limited power density at high discharge rates, while their alternatives, such as silicon and transition metal oxides, show even inferior rate capability. This work was motivated from an idea of what if the edge opening of graphite was zipped more open to lithium ions in the electrolyte. By edge-selective functionalization, the peripheral d-spacing of graphite (d(0)) was locally controlled. Larger values of d(0) led to higher capacity especially at high discharge rates. Around 2-fold enhancement of capacity or energy density was achieved at 50C discharge rate from 110 to 190 mAh g(-1) by exfoliating graphite locally in its edge region. Also, the d(0) dependency of delithiation kinetics confirmed that the electrochemical step of Li(+) influx into or efflux out of the interlayer space of graphite is possibly the rate-determining step of lithiation or delithiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...