Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Res ; 28: 0011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500782

RESUMO

Background: To improve the efficiency of neural development from human embryonic stem cells, human embryoid body (hEB) generation is vital through 3-dimensional formation. However, conventional approaches still have limitations: long-term cultivation and laborious steps for lineage determination. Methods: In this study, we controlled the size of hEBs for ectodermal lineage specification using cell-penetrating magnetic nanoparticles (MNPs), which resulted in reduced time required for initial neural induction. The magnetized cells were applied to concentrated magnetic force for magnet-derived multicellular organization. The uniformly sized hEBs were differentiated in neural induction medium (NIM) and suspended condition. This neurally induced MNP-hEBs were compared with other groups. Results: As a result, the uniformly sized MNP-hEBs in NIM showed significantly improved neural inductivity through morphological analysis and expression of neural markers. Signaling pathways of the accelerated neural induction were detected via expression of representative proteins; Wnt signaling, dopaminergic neuronal pathway, intercellular communications, and mechanotransduction. Consequently, we could shorten the time necessary for early neurogenesis, thereby enhancing the neural induction efficiency. Conclusion: Overall, this study suggests not only the importance of size regulation of hEBs at initial differentiation stage but also the efficacy of MNP-based neural induction method and stimulations for enhanced neural tissue regeneration.

2.
Biomater Res ; 28: 0008, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532906

RESUMO

Background: Cancer recurrence and metastasis are major contributors to treatment failure following tumor resection surgery. We developed a novel implantable drug delivery system utilizing glycol chitosan to address these issues. Glycol chitosan is a natural adjuvant, inducing dendritic cell activation to promote T helper 1 cell immune responses, macrophage activation, and cytokine production. Effective antigen production by dendritic cells initiates T-cell-mediated immune responses, aiding tumor growth control. Methods: In this study, we fabricated multifunctional methacrylated glycol chitosan (MGC) hydrogels with extended release of DNA/doxorubicin (DOX) complex for cancer immunotherapy. We constructed the resection model of breast cancer to verify the anticancer effects of MGC hydrogel with DNA/DOX complex. Results: This study demonstrated the potential of MGC hydrogel with extended release of DNA/DOX complex for local and efficient cancer therapy. The MGC hydrogel was implanted directly into the surgical site after tumor resection, activating tumor-related immune cells both locally and over a prolonged period of time through immune-reactive molecules. Conclusions: The MGC hydrogel effectively suppressed tumor recurrence and metastasis while enhancing immunotherapeutic efficacy and minimizing side effects. This biomaterial-based drug delivery system, combined with cancer immunotherapy, can substantial improve treatment outcomes and patient prognosis.

3.
Small ; : e2304862, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38050931

RESUMO

Atopic dermatitis (AD) is a widespread, recurrent, and chronic inflammatory skin condition that imposes a major burden on patients. Conventional treatments, such as corticosteroids, are associated with various side effects, underscoring the need for innovative therapeutic approaches. In this study, the possibility of using indole-3-acetic acid-loaded layered double hydroxides (IAA-LDHs) is evaluated as a novel treatment for AD. IAA is an auxin-class plant hormone with antioxidant and anti-inflammatory effects. Following the synthesis of IAA-LDH nanohybrids, their ability to induce M2-like macrophage polarization in macrophages obtained from mouse bone marrow is assessed. The antioxidant activity of IAA-LDH is quantified by assessing the decrease in intracellular reactive oxygen species levels. The anti-inflammatory and anti-atopic characteristics of IAA-LDH are evaluated in a mouse model of AD by examining the cutaneous tissues, immunological organs, and cells. The findings suggest that IAA-LDH has great therapeutic potential as a candidate for AD treatment based on its in vitro and in vivo modulation of AD immunology, enhancement of macrophage polarization, and antioxidant activity. This inorganic drug delivery technology represents a promising new avenue for the development of safe and effective AD treatments.

4.
J Nanobiotechnology ; 21(1): 310, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658367

RESUMO

BACKGROUND: Basic fibroblast growth factor (bFGF) is one of the critical components accelerating angiogenesis and tissue regeneration by promoting the migration of dermal fibroblasts and endothelial cells associated with matrix formation and remodeling in wound healing process. However, clinical applications of bFGF are substantially limited by its unstable nature due to rapid decomposition under physiological microenvironment. RESULTS: In this study, we present the bFGF-loaded human serum albumin nanoparticles (HSA-bFGF NPs) as a means of enhanced stability and sustained release platform during tissue regeneration. Spherical shape of the HSA-bFGF NPs with uniform size distribution (polydispersity index < 0.2) is obtained via a simple desolvation and crosslinking process. The HSA-bFGF NPs securely load and release the intact soluble bFGF proteins, thereby significantly enhancing the proliferation and migration activity of human dermal fibroblasts. Myofibroblast-related genes and proteins were also significantly down-regulated, indicating decrease in risk of scar formation. Furthermore, wound healing is accelerated while achieving a highly organized extracellular matrix and enhanced angiogenesis in vivo. CONCLUSION: Consequently, the HSA-bFGF NPs are suggested not only as a delivery vehicle but also as a protein stabilizer for effective wound healing and tissue regeneration.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Nanopartículas , Humanos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células Endoteliais , Albumina Sérica Humana , Cicatrização
5.
Appl Microbiol Biotechnol ; 106(22): 7531-7545, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36227339

RESUMO

Arginine deiminase (ADI) is a microbial-derived enzyme which catalyzes the conversion of L-arginine into L-citrulline. ADI originating from Mycoplasma has been reported to present anti-tumor activity against arginine-auxotrophic tumors, including melanoma. Melanoma cells are sensitive to arginine depletion due to reduced expression of argininosuccinate synthase 1 (ASS1), a key enzyme for arginine biosynthesis. However, clinical applications of recombinant ADI for melanoma treatment present some limitations. Since recombinant ADI is not human-derived, it shows instability, proteolytic degradation, and antigenicity in human serum. In addition, there is a problem of drug resistance issue due to the intracellular expression of once-silenced ASS1. Moreover, recombinant ADI proteins are mainly expressed as inclusion body forms in Escherichia coli and require a time-consuming refolding process to turn them back into active form. Herein, we propose fusion of recombinant ADI from Mycoplasma hominis and 30Kc19α, a cell-penetrating protein which also increases stability and soluble expression of cargo proteins, to overcome these problems. We inserted matrix metalloproteinase-2 cleavable linker between ADI and 30Kc19α to increase enzyme activity in melanoma cells. Compared to ADI, ADI-LK-30Kc19α showed enhanced solubility, stability, and cell penetration. The fusion protein demonstrated selective cytotoxicity and reduced drug resistance in melanoma cells, thus would be a promising strategy for the improved efficacy in melanoma treatment. KEY POINTS: • Fusion of ADI with 30Kc19α enhances soluble expression and productivity of recombinant ADI in E. coli • 30Kc19α protects ADI from the proteolytic degradation by shielding effect, helping ADI to remain active • Intracellular delivery of ADI by 30Kc19α overcomes ADI resistance in melanoma cells by degrading intracellularly expressed arginine.


Assuntos
Metaloproteinase 2 da Matriz , Melanoma , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Polietilenoglicóis , Argininossuccinato Sintase/metabolismo , Hidrolases/genética , Hidrolases/farmacologia , Hidrolases/metabolismo , Melanoma/tratamento farmacológico , Arginina/metabolismo , Linhagem Celular Tumoral
6.
Artif Cells Nanomed Biotechnol ; 50(1): 278-285, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36191335

RESUMO

As the acute lymphoblastic leukaemia (ALL) develops, expression of L-asparaginase (ASNase) protein is known to decrease. Therefore, deficiency of the ASNase protein would be regarded as one of the significant indications of the ALL. For the treatment of ALL, recombinant ASNase protein derived from bacterial origin is used which causes cytotoxicity by deprivation of Asn. However, short half-life of the protein is an obstacle for medical use. In order to overcome this limit, recombinant ASNase was fused to 30Kc19 with protein-stabilizing and cell-penetrating properties. As the 30Kc19 protein may induce steric hindrance, we further added a PLGLAG linker sequence (LK) between the ASNase and 30Kc19. The treatment of ASNase-LK-30Kc19 fusion protein demonstrated enhanced stability, cell-penetrating property, and anti-cancer activity. Intracellular delivery of both the non-cleaved and cleaved forms of the protein were observed, suggesting that ASNase acted both internally and externally, performing high anti-cancer activity by effective depletion of intracellular Asn. Additionally, ASNase-LK-30Kc19 showed high selectivity towards cancer cells. In terms of the dosage, releasable ASNase from ASNase-LK-30Kc19 reached the same half-maximal inhibitory concentration at a concentration five times lower than non-releasable ASNase-30Kc19. Altogether, the findings suggest that this fusion approach has potential applications in the treatment of ALL.


Assuntos
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antineoplásicos/uso terapêutico , Asparaginase/genética , Asparaginase/farmacologia , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo
7.
Nanoscale ; 14(39): 14482-14490, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36134732

RESUMO

Surface functionalization of nanoparticles with polyethylene glycol (PEG) has been widely demonstrated as an anti-opsonization strategy to reduce protein corona formation which is one of the major concerns affecting target receptor recognition. However, excessive surface passivation with PEG can lead to the strong inhibition of cellular uptake and less efficient binding to target receptors, resulting in reduced potential of targeted delivery. To improve specific cell targeting while reducing the nonspecific protein adsorption, a secondary packaging of the nanoparticles with shorter PEG chains, making the targeting ligands densely stretched out for enhanced molecular recognition is demonstrated. Particularly, we report the tailored surface functionalization of the porous nanoparticles that require the stealth shielding onto the open-pore region. This study shows that, in addition to the surface chemistry, the conformation of the PEG layers controls the cellular interaction of nanoparticles. Since the distance between neighboring PEG chains determines the structural conformation of the grafted PEG molecules, tailored PEG combinations can efficiently resist the adsorption of serum proteins onto the pores by transitioning the conformation of the PEG chains, thus significantly enhance the targeting efficiency (>5-fold). The stretched brush PEG conformation with secondary packaging of shorter PEG chains could be a promising anti-opsonization and active targeting strategy for efficient intracellular delivery of nanoparticles.


Assuntos
Nanopartículas , Coroa de Proteína , Proteínas Sanguíneas , Nanopartículas/química , Polietilenoglicóis/química , Porosidade , RNA Interferente Pequeno
8.
Front Bioeng Biotechnol ; 10: 911614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935494

RESUMO

Induced pluripotent stem cells (iPSCs) have intrinsic properties, such as self-renewal ability and pluripotency, which are also shown in embryonic stem cells (ESCs). The challenge of improving the iPSC generation efficiency has been an important issue and there have been many attempts to develop iPSC generation methods. In this research, we added Lin28, known as one of the reprogramming factors, in the form of a soluble recombinant protein from E. coli to improve the efficiency of human iPSC (hiPSC) generation, in respect of alkaline phosphatase (AP)-positive colonies. To deliver Lin28 inside the cells, we generated a soluble Lin28-30Kc19 fusion protein, with 30Kc19 at the C-terminal domain of Lin28. 30Kc19, a silkworm hemolymph-derived protein, was fused due to its cell-penetrating and protein-stabilizing properties. The Lin28-30Kc19 was treated to human dermal fibroblasts (HDFs), in combination with four defined reprogramming factors (Oct4, Sox2, c-Myc, and Klf4). After 14 days of cell culture, we confirmed the generated hiPSCs through AP staining. According to the results, the addition of Lin28-30Kc19 increased the number and size of generated AP-positive hiPSC colonies. Through this research, we anticipate that this recombinant protein would be a valuable material for increasing the efficiency of hiPSC generation and for enhancing the possibility as a substitute of the conventional method.

9.
Acta Biomater ; 149: 96-110, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35779769

RESUMO

Gelatin methacryloyl (GelMA) hydrogels have been widely used for cell encapsulation in tissue engineering due to their cell adhesiveness and biocompatibility. However, free radicals generated during gelation decrease the viability of the encapsulated cells by increasing intracellular oxidative stress, so appropriate strategies for scavenging free radicals need to be developed. To meet that need, we developed composite GelMA hydrogels incorporating nanofiber particles (EF) coated with epigallocatechin-gallate (EGCG). The GelMA composite hydrogels were successfully fabricated and had a storage modulus of about 5 kPa, which is similar to that of pristine GelMA hydrogel, and the drastic free radical scavenging activity of EGCG was highly preserved after gelation. In addition, human adipose-derived stem cells encapsulated within our composite hydrogels had better viability (about 1.5 times) and decreased intracellular oxidative stress (about 0.3 times) compared with cells within the pristine GelMA hydrogel. We obtained similar results with human dermal fibroblasts and human umbilical vein endothelial cells, indicating that our composite hydrogels are suitable for various cell types. Furthermore, we found that the ability of the encapsulated cells to spread and migrate increased by 5 times within the composite hydrogels. Collectively, our results demonstrate that incorporating EF into GelMA hydrogels is a promising way to enhance cell viability by reducing free-radical-derived cellular damage when fabricating 3D tissue ex vivo. STATEMENT OF SIGNIFICANCE: Gelatin methacryloyl (GelMA) hydrogels have been widely applied to various tissue engineering applications because of their biocompatibility and cell interactivity. However, free radicals generated during the GelMA hydrogel fabrication decrease the viability of encapsulated cells by elevating intracellular oxidative stress. Here, we demonstrate radical scavenging GelMA hydrogels incorporating epigallocatechin-gallate (EGCG)-coated nanofiber particles (EF). The composite GelMA hydrogels are successfully fabricated, maintaining their mechanical properties, and the viability of encapsulated human adipose-derived stem cells is greatly improved after the gelation, indicating that our composite GelMA hydrogel alleviates damages from free radicals. Collectively, the incorporation of EF within GelMA hydrogels may be a promising way to enhance the viability of encapsulated cells, which could be applied to 3D tissue fabrication.


Assuntos
Encapsulamento de Células , Hidrogéis , Gelatina/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis/farmacologia , Metacrilatos/farmacologia , Engenharia Tecidual/métodos
10.
Adv Sci (Weinh) ; 9(26): e2201883, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35751470

RESUMO

Severe infectious diseases, such as coronavirus disease 2019 (COVID-19), can induce hypercytokinemia and multiple organ failure. In spite of the growing demand for peptide therapeutics against infectious diseases, current small molecule-based strategies still require frequent administration due to limited half-life and enzymatic digestion in blood. To overcome this challenge, a strategy to continuously express multi-level therapeutic peptide drugs on the surface of immune cells, is established. Here, chimeric T cells stably expressing therapeutic peptides are presented for treatment of severe infectious diseases. Using lentiviral system, T cells are engineered to express multi-level therapeutic peptides with matrix metallopeptidases- (MMP-) and tumor necrosis factor alpha converting enzyme- (TACE-) responsive cleavage sites on the surface. The enzymatic cleavage releases γ-carboxyglutamic acid of protein C (PC-Gla) domain and thrombin receptor agonist peptide (TRAP), which activate endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR-1), respectively. These chimeric T cells prevent vascular damage in tissue-engineered blood vessel and suppress hypercytokinemia and lung tissue damages in vivo, demonstrating promise for use of engineered T cells against sepsis and other infectious-related diseases.


Assuntos
COVID-19 , Doenças Transmissíveis , Antígenos CD/metabolismo , Antígenos CD/farmacologia , Síndrome da Liberação de Citocina , Células Endoteliais/metabolismo , Humanos , Peptídeos/metabolismo , Receptor PAR-1/metabolismo , Receptores de Superfície Celular/metabolismo , Linfócitos T/metabolismo
11.
Front Bioeng Biotechnol ; 10: 862495, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35445003

RESUMO

Cytokine release syndrome (CRS) is a systemic inflammatory response resulting in overexpression of cytokines in serum and tissues, which leads to multiple-organ failure. Due to rapid aggravation of symptoms, timely intervention is paramount; however, current therapies are limited in their capacity to address CRS. Here, we find that the intravenous injection of highly purified detonation-synthesized nanodiamonds (DND) can act as a therapeutic agent for treating CRS by adsorbing inflammatory cytokines. Highly purified DNDs successfully inactivated various key cytokines in plasma from CRS patients with pneumonia, septic shock, and coronavirus disease 2019 pandemic (COVID-19). The intravenous injection of the DND samples in a mouse sepsis model by cecal ligation and puncture significantly improved survival rates and prevented tissue damage by reducing the circulating inflammatory cytokines. The results of this study suggest that the clinical application of highly purified DND can provide survival benefits for CRS patients by adsorbing inflammatory cytokines.

12.
J Control Release ; 345: 1-19, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35227764

RESUMO

Inflammatory bowel diseases (IBDs) are idiopathic gastrointestinal inflammatory disorders featuring chronic intestinal inflammation. Although IBDs are increasingly becoming globally prevalent, the exact etiology of IBD remains obscure. Recently, the ability of various drugs for mucosal healing such as corticosteroids, antibiotics, and immunosuppressants has been proven. However, the delivery of free drugs is insufficient and inadequate since some patients have experienced reduced efficacy due to repeated administration and others have suffered side effects. In this regard, novel platforms based on biomaterials are required to deliver pharmaceutical agents to the damaged site with increased efficacy and reduced side effects. In this review, we summarize the most recent status of numerous biomaterials in treating IBD. This review addresses various nanoparticles, microparticles, and hydrogels recently prepared from natural polymers, lipids, synthetic polymers, and inorganic materials. These diverse biomaterials can be used as effective drug-delivery systems to promote colon-specific delivery and for the stable release of drugs in IBD treatments.


Assuntos
Portadores de Fármacos , Doenças Inflamatórias Intestinais , Materiais Biocompatíveis/uso terapêutico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Polímeros/uso terapêutico
13.
Int J Biol Macromol ; 194: 903-913, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838857

RESUMO

Cell spheroids are three-dimensional cell aggregates that have been widely employed in tissue engineering. Spheroid encapsulation has been explored as a method to enhance cell-cell interactions. However, the effect of hydrogel mechanical properties on spheroids, specifically soft hydrogels (<1 kPa), has not yet been studied. In this study, we determined the effect of encapsulation of stem cell spheroids by hydrogels crosslinked with different concentrations of gelatin methacryloyl (GelMA) on the functions of the stem cells. To this end, human adipose-derived stem cell (ADSC) spheroids with a defined size were prepared, and spheroid-laden hydrogels with various concentrations (5, 10, 15%) were fabricated. The apoptotic index of cells from spheroids encapsulated in the 15% hydrogel was high. The migration distance was five-fold higher in cells encapsulated in the 5% hydrogel than the 10% hydrogel. After 14 days of culture, cells from spheroids in the 5% hydrogel were observed to have spread and proliferated. Osteogenic factor and pro-angiogenic factor production in the 15% hydrogel was high. Collectively, our results indicate that the functionality of spheroids can be regulated by the mechanical properties of hydrogel, even under 1 kPa. These results indicate that spheroid-laden hydrogels are suitable for use in 3D tissue construction.


Assuntos
Técnicas de Cultura de Células , Gelatina/química , Hidrogéis/química , Fenômenos Mecânicos , Metacrilatos/química , Esferoides Celulares , Células-Tronco/citologia , Engenharia Tecidual , Apoptose , Proliferação de Células , Sobrevivência Celular , Fenômenos Químicos , Humanos , Temperatura , Engenharia Tecidual/métodos
15.
Adv Mater ; 33(43): e2103258, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34510559

RESUMO

Chimeric antigen receptor-T (CAR-T) cell immunotherapy has shown impressive clinical outcomes for hematologic malignancies. However, its broader applications are challenged due to its complex ex vivo cell-manufacturing procedures and low therapeutic efficacy against solid tumors. The limited therapeutic effects are partially due to limited CAR-T cell infiltration to solid tumors and inactivation of CAR-T cells by the immunosuppressive tumor microenvironment. Here, a facile approach is presented to in vivo program macrophages, which can intrinsically penetrate solid tumors, into CAR-M1 macrophages displaying enhanced cancer-directed phagocytosis and anti-tumor activity. In vivo injected nanocomplexes of macrophage-targeting nanocarriers and CAR-interferon-γ-encoding plasmid DNA induce CAR-M1 macrophages that are capable of CAR-mediated cancer phagocytosis, anti-tumor immunomodulation, and inhibition of solid tumor growth. Together, this study describes an off-the-shelf CAR-macrophage therapy that is effective for solid tumors and avoids the complex and costly processes of ex vivo CAR-cell manufacturing.


Assuntos
Receptores de Antígenos Quiméricos
16.
Biomaterials ; 273: 120827, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33910079

RESUMO

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on a global scale urges prompt and effective countermeasures. Recently, a study has reported that coronavirus disease-19 (COVID-19), the disease caused by SARS-CoV-2 infection, is associated with a decrease in albumin level, an increase in NETosis, blood coagulation, and cytokine level. Here, we present drug-loaded albumin nanoparticles as a therapeutic agent to resolve the clinical outcomes observed in severe SARS-CoV-2 patients. PEGylated nanoparticle albumin-bound (PNAB) was used to promote prolonged bioactivity of steroidal ginsenoside saponins, PNAB-Rg6 and PNAB-Rgx365. Our data indicate that the application of PNAB-steroidal ginsenoside can effectively reduce histone H4 and NETosis-related factors in the plasma, and alleviate SREBP2-mediated systemic inflammation in the PBMCs of SARS-CoV-2 ICU patients. The engineered blood vessel model confirmed that these drugs are effective in suppressing blood clot formation and vascular inflammation. Moreover, the animal model experiment showed that these drugs are effective in promoting the survival rate by alleviating tissue damage and cytokine storm. Altogether, our findings suggest that these PNAB-steroidal ginsenoside drugs have potential applications in the treatment of symptoms associated with severe SARS-CoV-2 patients, such as coagulation and cytokine storm.


Assuntos
COVID-19 , Ginsenosídeos , Nanopartículas , Albuminas , Animais , Ginsenosídeos/farmacologia , Humanos , Polietilenoglicóis , SARS-CoV-2
17.
Nano Today ; 38: 101149, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33846686

RESUMO

In response to the coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), global efforts are focused on the development of new therapeutic interventions. For the treatment of COVID-19, selective lung-localizing strategies hold tremendous potential, as SARS-CoV-2 invades the lung via ACE2 receptors and causes severe pneumonia. Similarly, recent reports have shown the association of COVID-19 with decreased 25-hydroxycholesterol (25-HC) and increased cytokine levels. This mechanism, which involves the activation of inflammatory NF-κB- and SREBP2-mediated inflammasome signaling pathways, is believed to play a crucial role in COVID-19 pathogenesis, inducing acute respiratory distress syndrome (ARDS) and sepsis. To resolve those clinical conditions observed in severe SARS-CoV-2 patients, we report 25-HC and didodecyldimethylammonium bromide (DDAB) nanovesicles (25-HC@DDAB) as a COVID-19 drug candidate for the restoration of intracellular cholesterol level and suppression of cytokine storm. Our data demonstrate that 25-HC@DDAB can selectively accumulate the lung tissues and effectively downregulate NF-κB and SREBP2 signaling pathways in COVID-19 patient-derived PBMCs, reducing inflammatory cytokine levels. Altogether, our findings suggest that 25-HC@DDAB is a promising candidate for the treatment of symptoms associated with severe COVID-19 patients, such as decreased cholesterol level and cytokine storm.

18.
J Hazard Mater ; 414: 125472, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33640729

RESUMO

The potential health hazards of particulates, such as micro/nano-sized plastics and carbon materials have recently received extensive attention. However, their toxicological properties in association with stem cell differentiation is still relatively unexplored. In this study, we elucidated the cytotoxic effects of 2D graphene oxide (GO), in relation to differentiation of human induced pluripotent stem cells (hiPSCs). Supplementation of GO to hiPSCs demonstrated uptake of GO through the plasma membrane and intracellular accumulation was observed. Increasing the concentration of GO led to reduced viability and increased likelihood of hiPSC colony detachment. Moreover, treatment of GO resulted in significant loss in pluripotency markers, OCT-4 and NANOG. In particular, when hiPSCs were cultured with GO in cardiomyocyte induction medium, upregulation of cardiomyocyte marker, NKX2.5, along with observation of early triggering of differentiation were observed. Taken together, our results highlight the risk in the uptake and accumulation of GO on the stem cell development by unwanted loss in pluripotency and accelerated initiation of differentiation.


Assuntos
Grafite , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular , Grafite/toxicidade , Humanos
19.
Acta Biomater ; 124: 166-178, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33561564

RESUMO

In tissue engineering, excessively generated reactive oxygen species (ROS) during biomaterial implantation or cell transplantation is a one of major causes of diminishing therapeutic effects. In this study, we prepared biomaterial surfaces coated with antioxidant epigallocatechin gallate (EGCG) and metal ions, and evaluated their anti-oxidative and ROS scavenging properties. We revealed that EGCG-coating on polycaprolactone (PCL) film surface increased hydrophilicity and anti-oxidative properties as a function of total phenol content (TPC) potentially due to the increase in phenolic -OH and π-electrons from structural maintenance and directly removed the hydrogen peroxide (H2O2) by resonance-stabilization. Furthermore, EGCG-coated PCL film increased attachment, spreading area, and viability of human adipose-derived stem cells (hADSCs) against H2O2 treatment while stimulated the cellular signaling to reduce apoptotic gene and enhance anti-oxidative enzyme expression. Further, we applied EGCG coating on the surface of poly-L-lactic acid (PLLA) fibers. Spheroids incorporating EGCG-coated PLLA fibers were able to maintain their shape and showed improved viability and anti-oxidative activities in response to H2O2-induced oxidative stress than control spheroids. Therefore, metal-phenolic network (MPN) coating of EGCG is a suitable method to impart the anti-oxidative properties to biomaterials by evaluating the structural properties and biological effects.


Assuntos
Materiais Biocompatíveis , Catequina , Antioxidantes/farmacologia , Catequina/análogos & derivados , Catequina/farmacologia , Humanos , Peróxido de Hidrogênio , Estresse Oxidativo , Espécies Reativas de Oxigênio , Engenharia Tecidual
20.
Biosens Bioelectron ; 178: 113031, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33571808

RESUMO

Aberrant production of reactive oxygen species (ROS) leads to tissue damage accumulation, which is associated with a myriad of human pathologies. Although several sensors have been developed for ROS quantification, their applications for ROS-related human physiologies and pathologies still remain problematic due to the unstable nature of ROS. Herein, we developed Trx1-cpYFP-fRMsr (TYfR), a genetically-encoded fluorescent biosensor with the remarkable specificity and sensitivity toward fMetRO (free Methionine-R-sulfoxide), allowing for dynamic quantification of physiological levels of fMetRO, a novel indicator of ROS and methionine redox status in vitro and in vivo. Moreover, using the sensor, we observed a significant fMetRO enrichment in serum from patients with acute coronary syndrome, one of the most severe cardiovascular diseases, which becomes more evident following percutaneous coronary intervention. Collectively, this study proposes that fMetRO is a novel biomarker of tissue damage accumulation in ROS-associated human pathologies, and that TYfR is a promising tool for quantifying fMetRO with potentials in versatile applications.


Assuntos
Técnicas Biossensoriais , Metionina Sulfóxido Redutases , Humanos , Metionina , Metionina Sulfóxido Redutases/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...