Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2310013, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552154

RESUMO

The development of a cost-competitive and efficient electrocatalyst is both attractive and challenging for hydrogen production by hydrogen evolution reaction (HER). Herein, a facile glycol reduction method to construct Ru nanoclusters coupled with hierarchical exfoliated-MXene/reduced graphene oxide architectures (Ru-E-MXene/rGA) is reported. The hierarchical structure, formed by the self-assembly of graphene oxides, can effectively prohibit the self-stacking of MXene nanosheets. Meanwhile, the formation of the MXene/rGA interface can strongly trap the Ru3+ ions, resulting in the uniform distribution of Ru nanoclusters within Ru-E-MXene/rGA. The boosted catalytic activity and underlying catalytic mechanism during the HER process are proved by density functional theory. Ru-E-MXene/rGA exhibits overpotentials of 42 and 62 mV at 10 mA cm-2 in alkaline and acidic electrolytes, respectively. The small Tafel slope and charge transfer resistance (Rct) values elucidate its fast dynamic behavior. The cyclic voltammetry (CV) curves and chronoamperometry test confirm the high stability of Ru-E-MXene/rGA. These results demonstrate that coupling Ru nanoclusters with the MXene/rGA heterostructure represents an efficient strategy for constructing MXene-based catalysts with enhanced HER activity.

2.
ACS Appl Mater Interfaces ; 15(31): 37344-37353, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37497864

RESUMO

Herein, we demonstrate an inorganic-organic double network gel electrolyte consisting of a silica particle network and a poly-2-hydroxyethyl methacrylate network in which 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquids are confined. The as-synthesized double network ionogel electrolytes exhibited high ion conductivity of 3.8 to 12.8 mS cm-1 over a wide temperature range of 30 to 150 °C and mechanical integrity with a maximum toughness of 1.8 MJ m-3 at 30 °C. These remarkable properties of the ionogel were associated with the formation of an optimal physical network of the silica nanoparticles in the colloidal dispersion. Accordingly, a flexible supercapacitor using ionogel electrolytes and reduced graphene oxide electrodes delivered energy and power densities of 48 Wh kg-1 and 4 kW kg-1, respectively, even at a high temperature of 120 °C, demonstrating excellent long-term stability that retains 93% of the initial capacitance even over 10,000 charge/discharge cycles at 120 °C.

3.
Nanomicro Lett ; 15(1): 63, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899146

RESUMO

Si is considered as the promising anode materials for lithium-ion batteries (LIBs) owing to their high capacities of 4200 mAh g-1 and natural abundancy. However, severe electrode pulverization and poor electronic and Li-ionic conductivities hinder their practical applications. To resolve the afore-mentioned problems, we first demonstrate a cation-mixed disordered lattice and unique Li storage mechanism of single-phase ternary GaSiP2 compound, where the liquid metallic Ga and highly reactive P are incorporated into Si through a ball milling method. As confirmed by experimental and theoretical analyses, the introduced Ga and P enables to achieve the stronger resistance against volume variation and metallic conductivity, respectively, while the cation-mixed lattice provides the faster Li-ionic diffusion capability than those of the parent GaP and Si phases. The resulting GaSiP2 electrodes delivered the high specific capacity of 1615 mAh g-1 and high initial Coulombic efficiency of 91%, while the graphite-modified GaSiP2 (GaSiP2@C) achieved 83% of capacity retention after 900 cycles and high-rate capacity of 800 at 10,000 mA g-1. Furthermore, the LiNi0.8Co0.1Mn0.1O2//GaSiP2@C full cells achieved the high specific capacity of 1049 mAh g-1 after 100 cycles, paving a way for the rational design of high-performance LIB anode materials.

4.
ACS Appl Mater Interfaces ; 15(12): 15298-15310, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36919989

RESUMO

Lithium polymer batteries (LPBs) with a high energy density and safety are being actively studied for their use as an energy storage system. However, bottlenecks to their development include charge-transport resistance and poor interfacial contact. In this paper, we introduce carbon nanofiber (CNF) as a conductive additive and the optimization of porosity in the electrode by calendering to realize a high loading density LPB. A simple dispersion strategy is applied to homogeneously disperse nanofiber additives in the electrode to achieve high electronic conductivity. Calendering with optimized pressing degree was performed on the CNF-based electrode to enhance lithium-ion transport and electron conduction in the LPB. The optimal pressing conditions were confirmed by measuring the electronic conductivity, internal resistance, lithium-ion diffusion coefficient, and charge transport characteristics of the cells. When the electrode was pressed by 35%, optimum electrode wettability by solid polymer electrolyte and contact between particles and current collector were achieved, resulting in the high performance of the LPB. Finally, at the optimized pressing degree, we successfully demonstrate 90% cycle retention during 100 cycles and an improvement of the volumetric energy density by over seven-fold.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36763034

RESUMO

Recently, intercalation pseudocapacitance has received significant interest as an abnormal charge storage mechanism owing to the battery-like intercalation energy storage into the bulk electrodes and the fast charge storage kinetics of electrochemical capacitors. However, intercalation pseudocapacitance of molybdenum-based polyoxometalates (POMs) for high-performance Zn ion battery (ZIB) cathodes is yet to be exploited. Herein, we demonstrate the fast and reversible intercalation pseudocapacitance of vanadium-substituted Keggin-type molybdenum-based POMs (XPMoV), where H of HPMoV is replaced by X cations (X = Li, Na, K, or Rb). This cation exchange allows cation-exchanged XPMoV to exhibit the morphological evolution into an anisotropic rodlike structure and to achieve a pillar effect on the improved chemical and structural integrity. Despite the micron-size rod morphology and the contracted lattice of (100) plane, the intercalation pseudocapacitance kinetics of XPMoV was dominated by the fast surface-confined electrochemistry and became highly reversible after the 1st cycle activation process by co-intercalation of Li+ and Zn2+ ions. Therefore, the ZIB with the KPMoV cathode delivered a high rate capability of 74.0 mAh g-1 at 20,000 mA g-1 and 87% capacity retention over 2000 cycles at 1000 mA g-1, far exceeding HPMoV and other Mo-based cathodes. This study paves the way to design the fast and reversible intercalation pseudocapacitance of POMs and the cation exchange chemistry into the improved (electro)chemical and structural integrity.

6.
Small Methods ; 7(8): e2201440, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36707415

RESUMO

Recently, anion storage materials have gained significant attention owing to the widened cell voltage and additional anion storing capacity for a large energy density. MXenes are considered as the emerging anion storing materials owing to their sufficient interlayer spacing, rich surface chemistries, tunable structures, remarkable electrochemical properties, and mechanical integrity. Herein, a comprehensive review on the anion storage of MXenes covering their anion storage mechanism and state-of-the-art chemical strategies for the improved anion storage performances is reported. The recent progress of MXenes on aluminum ion batteries, metal halogen batteries, halogen ion batteries, and electrochemical electrode deionization is addressed. The scientific and technical challenges and the research direction into the anion storage of MXenes are also addressed and finally the authors' perspective on anion storage of MXenes is provided. Therefore, this review offers an insight into the rational design of MXenes for anion storage materials and the correlation of surface chemistries and structural modifications with anion storage properties for the applications into electrochemical energy storage and water purification.

7.
Small ; 19(4): e2205681, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36420916

RESUMO

Potassium- and sodium-ion batteries (PIBs and SIBs) have great potential as the next-generation energy application owing to the natural abundance of K and Na. Antimony (Sb) is a suitable alloying-type anode for PIBs and SIBs due to its high theoretical capacity and proper operation voltage; yet, the severe volume variation remains a challenge. Herein, a preparation of N-doped carbon-wrapped Sb nanoparticles (L-Sb/NC) using pulsed laser ablation and polydopamine coating techniques, is reported. As the anode for PIB and SIB, the L-Sb/NC delivers superior rate capabilities and excellent cycle stabilities (442.2 and 390.5 mA h g-1 after 250 cycles with the capacity decay of 0.037% and 0.038% per cycle) at the current densities of 0.5 and 1.0 A g-1 , respectively. Operando X-ray diffraction reveals the facilitated and stable potassiation and sodiation mechanisms of L-Sb/NC enabled by its optimal core-shell structure. Furthermore, the SIB full cell fabricated with L-Sb/NC and Na3 V2 (PO4 )2 F3 shows outstanding electrochemical performances, demonstrating its practical energy storage application.

8.
Small ; 18(45): e2204797, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36123143

RESUMO

Interface modulation of nickel phosphide (Ni2 P) to produce an optimal catalytic activation barrier has been considered a promising approach to enhance the hydrogen production activity via water splitting. Herein, heteronuclei-mediated in situ growth of hollow Ni2 P nanospheres on a surface defect-engineered titanium carbide (Ti3 C2 Tx ) MXene showing high electrochemical activity for the hydrogen evolution reaction (HER) is demonstrated. The heteronucleation drives intrinsic strain in hexagonal Ni2 P with an observable distortion at the Ni2 P@Ti3 C2 Tx MXene heterointerface, which leads to charge redistribution and improved charge transfer at the interface between the two components. The strain at the Ni2 P@Ti3 C2 Tx MXene heterointerface significantly boosts the electrochemical catalytic activities and stability toward HER in an acidic medium via a combination between experimental results and theoretical calculations. In a 0.5 m H2 SO4 electrolyte, the Ni2 P@Ti3 C2 Tx MXene hybrid shows excellent HER catalytic performance, requiring an overpotential of 123.6 mV to achieve 10 mA cm-2 with a Tafel slope of 39 mV dec-1 and impressive durability over 24 h operation. This approach presents a significant potential to rationally design advanced catalysts coupled with 2D materials and transition metal-based compounds for state-of-the-art high efficiency energy conversions.

9.
Nanomaterials (Basel) ; 12(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893493

RESUMO

Transition bimetallic alloy-based catalysts are regarded as attractive alternatives for the oxygen evolution reaction (OER), attributed to their competitive economics, high conductivity and intrinsic properties. Herein, we prepared FeNi3/C nanorods with largely improved catalytic OER activity by combining hydrothermal reaction and thermal annealing treatment. The temperature effect on the crystal structure and chemical composition of the FeNi3/C nanorods was revealed, and the enhanced catalytic performance of FeNi3/C with an annealing temperature of 400 °C was confirmed by several electrochemical tests. The outstanding catalytic performance was assigned to the formation of bimetallic alloys/carbon composites. The FeNi3/C nanorods showed an overpotential of 250 mV to afford a current density of 10 mA cm-2 and a Tafel slope of 84.9 mV dec-1, which were both smaller than the other control samples and commercial IrO2 catalysts. The fast kinetics and high catalytic stability were also verified by electrochemical impendence spectroscopy and chronoamperometry for 15 h. This study is favorable for the design and construction of bimetallic alloy-based materials as efficient catalysts for the OER.

10.
Nat Commun ; 13(1): 3019, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641519

RESUMO

For the practical use of synthetic hydrogels as artificial biological tissues, flexible electronics, and conductive membranes, achieving requirements for specific mechanical properties is one of the most prominent issues. Here, we demonstrate superstrong, superstiff, and conductive alginate hydrogels with densely interconnecting networks implemented via simple reconstructing processes, consisting of anisotropic densification of pre-gel and a subsequent ionic crosslinking with rehydration. The reconstructed hydrogel exhibits broad ranges of exceptional tensile strengths (8-57 MPa) and elastic moduli (94-1,290 MPa) depending on crosslinking ions. This hydrogel can hold sufficient cations (e.g., Li+) within its gel matrix without compromising the mechanical performance and exhibits high ionic conductivity enough to be utilized as a gel electrolyte membrane. Further, this strategy can be applied to prepare mechanically outstanding, ionic-/electrical-conductive hydrogels by incorporating conducting polymer within the hydrogel matrix. Such hydrogels are easily laminated with strong interfacial adhesion by superficial de- and re-crosslinking processes, and the resulting layered hydrogel can act as a stable gel electrolyte membrane for an aqueous supercapacitor.


Assuntos
Alginatos , Hidrogéis , Condutividade Elétrica , Íons , Polímeros , Resistência à Tração
11.
Materials (Basel) ; 14(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071341

RESUMO

A polymer-based nanofiber membrane with a high specific surface area, high porosity and abundant adsorption sites is demonstrated for selective trapping of radionuclides. The Prussian blue (PB)/poly(methyl methacrylate) (PMMA) nanofiber composites were successfully prepared through a one-step, single-nozzle electrospinning method. Various analytical techniques were used to examine the physical and chemical properties of PB nanoparticles and electrospun nanofibers. It is possible to enhance binding affinity and selectivity to radionuclide targets by incorporation of the PB nanoparticles into the polymer matrix. It is noteworthy that the maximum 133Cs adsorption capacity of hte PB/PMMA nanofiber filter is approximately 28 times higher than that of bulk PB, and the removal efficiency is measured to be 95% at 1 ppm of 133Cs. In addition, adsorption kinetics shows that the PB/PMMA nanofiber has a homogenous surface for adsorption, and all sites on the surface have equal adsorption energies in terms of ion-exchange between cyano groups of the introduced PB nanoparticles and radionuclides.

12.
Chem Soc Rev ; 50(12): 6734-6789, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33955977

RESUMO

Electrochemical capacitors charge and discharge more rapidly than batteries over longer cycles, but their practical applications remain limited due to their significantly lower energy densities. Pseudocapacitors and hybrid capacitors have been developed to extend Ragone plots to higher energy density values, but they are also limited by the insufficient breadth of options for electrode materials, which require materials that store alkali metal cations such as Li+ and Na+. Herein, we report a comprehensive and systematic review of emerging anion storage materials for performance- and functionality-oriented applications in electrochemical and battery-capacitor hybrid devices. The operating principles and types of dual-ion and whole-anion storage in electrochemical and hybrid capacitors are addressed along with the classification, thermodynamic and kinetic aspects, and associated interfaces of anion storage materials in various aqueous and non-aqueous electrolytes. The charge storage mechanism, structure-property correlation, and electrochemical features of anion storage materials are comprehensively discussed. The recent progress in emerging anion storage materials is also discussed, focusing on high-performance applications, such as dual-ion- and whole-anion-storing electrochemical capacitors in a symmetric or hybrid manner, and functional applications including micro- and flexible capacitors, desalination, and salinity cells. Finally, we present our perspective on the current impediments and future directions in this field.

13.
Chemistry ; 27(43): 11150-11157, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-33999455

RESUMO

Highly active and durable electrocatalysts are essential for producing hydrogen fuel through the hydrogen evolution reaction (HER). Here, a uniform deposition of Ru nanoparticles strongly interacting with oxygen-rich carbon nanotube architectures (Ru-OCNT) through ozonation and hydrothermal approaches has been designed. The hierarchical structure of Ru-OCNT is made by self-assembly of oxygen functionalities of OCNT. Ru nanoparticles interact strongly with OCNT at the Ru/OCNT interface to give excellent catalytic activity and stability of the Ru-OCNT, as further confirmed by density functional theory. Owing to the hierarchical structure and adjusted surface chemistry, Ru-OCNT has an overpotential of 34 mV at 10 mA cm-2 with a Tafel slope of 27.8 mV dec-1 in 1 M KOH, and an overpotential of 55 mV with Tafel slope of 33 mV dec-1 in 0.5 M H2 SO4 . The smaller Tafel slope of Ru-OCNT than Ru-CNT and commercial Pt/C in both alkaline and acidic electrolytes indicates high catalytic activity and fast charge transfer kinetics. The as-proposed chemistry provides the rational design of hierarchically structured CNT/nanoparticle electrocatalysts for HER to produce hydrogen fuel.

14.
ACS Appl Mater Interfaces ; 13(15): 17978-17987, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33821600

RESUMO

Functional separators, which are chemically modified and coated with nanostructured materials, are considered an effective and economical approach to suppressing the shuttle effect of lithium polysulfide (LiPS) and promoting the conversion kinetics of sulfur cathodes. Herein, we report cobalt-aluminum-layered double hydroxide quantum dots (LDH-QDs) deposited with nitrogen-doped graphene (NG) as a bifunctional separator for lithium-sulfur batteries (LSBs). The mesoporous LDH-QDs/NG hybrids possess abundant active sites of Co2+ and hydroxide groups, which result in capturing LiPSs through strong chemical interactions and accelerating the redox kinetics of the conversion reaction, as confirmed through X-ray photoelectron spectroscopy, adsorption tests, Li2S nucleation tests, and electrokinetic analyses of the LiPS conversion. The resulting LDH-QDs/NG hybrid-coated polypropylene (LDH-QDs/NG/PP) separator, with an average thickness of ∼17 µm, has a high ionic conductivity of 2.67 mS cm-1. Consequently, the LSB cells with the LDH-QDs/NG/PP separator can deliver a high discharge capacity of 1227.48 mAh g-1 at 0.1C along with a low capacity decay rate of 0.041% per cycle over 1200 cycles at 1.0C.

15.
Polymers (Basel) ; 13(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923627

RESUMO

With the development of microelectronic devices having miniaturized and integrated electronic components, an efficient thermal management system with lightweight materials, which have outstanding thermal conductivity and processability, is becoming increasingly important. Recently, the use of polymer-based thermal management systems has attracted much interest due to the intrinsic excellent properties of the polymer, such as the high flexibility, low cost, electrical insulation, and excellent processability. However, most polymers possess low thermal conductivity, which limits the thermal management applications of them. To address the low thermal conduction of the polymer materials, many kinds of thermally conductive fillers have been studied, and the carbon-based polymer composite is regarded as one of the most promising materials for the thermal management of the electric and electronic devices. In addition, the next generation electronic devices require composite materials with various additional functions such as flexibility, low density, electrical insulation, and oriented heat conduction, as well as ultrahigh thermal conductivity. In this review, we introduce the latest papers on thermally conductive polymer composites based on carbon fillers with sophisticated structures to meet the above requirements. The topic of this review paper consists of the following four contents. First, we introduce the design of a continuous three-dimensional network structure of carbon fillers to reduce the thermal resistance between the filler-matrix interface and individual filler particles. Second, we discuss various methods of suppressing the electrical conductivity of carbon fillers in order to manufacture the polymer composites that meet both the electrical insulation and thermal conductivity. Third, we describe a strategy for the vertical alignment of carbon fillers to improve the through-plane thermal conductivity of the polymer composite. Finally, we briefly mention the durability of the thermal conductivity performance of the carbon-based composites. This review presents key technologies for a thermal management system of next-generation electronic devices.

16.
ACS Nano ; 15(3): 5560-5566, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33621465

RESUMO

Herein, binary heteronanosheets made of ultrathin ReS2 nanosheets and reduced graphene oxide (RGO) with either a two-dimensional (2D) "sheet-on-sheet" architecture (2D ReS2/RGO) or a three-dimensional hierarchical structure (3D ReS2/RGO) are constructed through rational structure-engineering strategies. In the resultant 3D ReS2/RGO heteronanosheets, the ultrathin ReS2 nanosheets are bridged on the RGO surface through Re-O bonds in a vertically oriented manner, which endows the heteronanosheets with open frameworks and a hierarchical porous structure. In sharp contrast to the 2D ReS2/RGO, the 3D ReS2/RGO heteronanosheets are featured with abundant active sites and channels for efficient electrolyte ions transport. This, coupled with the strong affinity toward oxygen-containing intermediates intrinsically associated with the binary ReS2/RGO structure, imparts excellent oxygen reduction performance to the 3D ReS2/RGO heteronanosheets for potential applications in fuel cells and metal-air batteries.

17.
Small ; 17(9): e1903089, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32243069

RESUMO

Here, a thin and foldable porous reduced graphene oxide (rGO) fabricated by a solvent casting method (SC-rGO) is introduced. The SC-rGO is superior to aluminum as a positive triboelectric material in triboelectric nanogenerators (TENGs), significantly enhancing TENG output performance. The film shows extremely foldable features, where it could be folded by 1/16 size. The electrical properties and device performance of SC-rGO are optimized varying thicknesses from 5 to 30 µm. A 30 µm thick TENG with a non-annealed SC-rGO film (STENG) shows the highest output of about 255 µW cm-2 due to its high carrier concentration, low work function, and high surface area. After annealing, STENG performance is optimized with a 10 µm thick SC-rGO because their work functions decreases, while the corresponding carrier concentrations decrease according to the thickness of the SC-rGO films. The SC-rGO films are highly durable and stable, where their output and conductivity show negligible changes after 100 000 cycles of mechanical deformation. A large SC-rGO with a size of 13 × 3 cm2 is fabricated and is attached inside a person's arm to demonstrate the shape-adaptive characteristics. Consequently, 170 V is obtained and it turns on 19 green light emitting diodes by simply touching the STENG.

18.
ACS Nano ; 14(12): 17615-17625, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33301316

RESUMO

The design of nonprecious bifunctional electrocatalysts with high activity and prolonged durability in a wide pH range is essential for the development of the highly efficient, cost-effective, and simplified overall water splitting systems. Here, we report core-shell structured MXene@carbon (MX@C) nanodot hybrids with high bifunctional activity, where N-doped carbon shells are grown in a heteroepitaxial manner strongly interacting with the MXene core. The resulting MX@C nanodot hybrids show enhanced catalytic activity for electrochemical hydrogen evolution reaction (HER) in various pH media from 0 to 14. At pH 14, MX@C achieves the low onset potential of 134 mV at 10 mA/cm2 and reduced Tafel slope of 32 mV/dec due to the facilitated charge transfer along the recombination reaction. For the oxygen evolution reaction (OER), MX@C nanodots are incorporated onto the surface of molybdenum-doped bismuth vanadate (Mo:BiVO4) as a cocatalyst of the photoanode, thereby achieving 1.5 times higher photocurrent density than pristine Mo:BiVO4 at 1.23 V (vs reversible hydrogen electrode) due to the enhanced light absorption and charge transfer efficiency. The superiority of this hybrid catalyst is demonstrated implementing the solar-assisted overall water splitting cells based on the MX@C cathode and MX@C/Mo:BiVO4 photoanode. These cells show the enhancement of current density from 0.78 to 1.23 mA/cm2 with long-term durability over 8 h. These results are attributed to the facile surface catalytic kinetics of the chemically and electronically coupled MX@C hybrid at the heterointerface for both OER and HER.

19.
ACS Appl Mater Interfaces ; 12(46): 51329-51336, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33156598

RESUMO

Hybridizing and architecting two kinds of 2D nanomaterials are attractive for energy storage applications. Herein, the chemical and electronic coupling of redox active 1T MoS2 phase with hierarchical phosphorus-doped graphene architecture (HMPGA) is accomplished by the strong interactions of 2D hybrid colloids. The spectroscopic analyses on the crystal structure, surface morphology, and composition confirm the efficient doping of phosphorus and the hybridization interaction of 1T MoS2 with the phosphorus-incorporated graphene. The resulting HMPGA anode shows significant improvement in battery performances. The specific capacity is delivered to 1194 mAh g-1 at 100 mA g-1 with a cyclability of 93.3% over 600 cycles. This improvement is ascribed to the multicoupling effect arising from the abundant redox-actives sites of 1T MoS2 phase boosted and stabilized by hierarchically architected, phosphorus-doped graphenes.

20.
ACS Nano ; 14(7): 7696-7703, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32579331

RESUMO

Temperature is a state variable that significantly affects thermodynamic and kinetic performances and performance degradation of energy storage materials. In this Perspective, we address our recent progress in the energy storage performance and transporting phenomena of supercapacitors when temperatures are elevated to >100 °C. Electrodes include reduced graphene oxide film and foam and conductive metal organic frameworks; electrolytes include phosphoric-acid-doped polybenzimidazole and double networked ionogels. The electrochemical, thermal, and mechanical properties of electrodes and electrolytes are correlated with energy storage performance and degradation at high temperatures. We also address the fundamental understanding of ion transport of polymeric electrolytes and the emergence of nanoscale-confined fast mobile protons at elevated temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...