Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 8(14): 9446-53, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26999581

RESUMO

Here, we demonstrate the production of electrospun SnO(x)-ZnO polyacrylonitrile (PAN) nanofibers (NFs) that are flexible, freestanding, and binder-free. This NF fabric is flexible and thus can be readily tailored into a coin for further cell fabrication. These properties allow volume expansion of the oxide materials and provide shortened diffusion pathways for Li ions than those achieved using the nanoparticle approach. Amorphous SnO(x)-ZnO particles were uniformly dispersed in the carbon NF (CNF). The SnO(x)-ZnO CNFs with a Sn:Zn ratio of 3:1 exhibited a superior reversible capacity of 963 mA·h·g(-1) after 55 cycles at a current density of 100 mA·g(-1), which is three times higher than the capacity of graphite-based anodes. The amorphous NFs facilitated Li2O decomposition, thereby enhancing the reversible capacity. ZnO prevented the aggregation of Sn, which, in turn, conferred stable and high discharge capacity to the cell. Overall, the SnO(x)-ZnO CNFs were shown to exhibit remarkably high capacity retention and high reversible and rate capacities as Li ion battery anodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA