Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ind Microbiol Biotechnol ; 44(7): 1107-1113, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28315963

RESUMO

A Bacillus sp. strain named BRC1 is capable of producing 2,3-butanediol (2,3-BD) using hydrolysates of the Jerusalem artichoke tuber (JAT), a rich source of the fructose polymer inulin. To enhance 2,3-BD production, we undertook an extensive analysis of the Bacillus sp. BRC1 genome, identifying a putative gene (sacC) encoding a fructan hydrolysis enzyme and characterizing the activity of the resulting recombinant protein expressed in and purified from Escherichia coli. Introduction of the sacC gene into Bacillus sp. BRC1 using an expression vector increased enzymatic activity more than twofold. Consistent with this increased enzyme expression, 2,3-BD production from JAT was also increased from 3.98 to 8.10 g L-1. Fed-batch fermentation of the recombinant strain produced a maximal level of 2,3-BD production of 28.6 g L-1, showing a high theoretical yield of 92.3%.


Assuntos
Bacillus/genética , Butileno Glicóis/metabolismo , Glicosídeo Hidrolases/metabolismo , Helianthus/química , Extratos Vegetais/química , Tubérculos/química , Sequência de Aminoácidos , Bacillus/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Clonagem Molecular , Escherichia coli/genética , Genes Bacterianos , Glicosídeo Hidrolases/genética , Inulina/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Recombinantes
2.
Micromachines (Basel) ; 7(11)2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30404382

RESUMO

Solutions for the bonding and sealing of micro-channels in the manufacturing process of microfluidic devices are limited; therefore, further technical developments are required to determine these solutions. In this study, a new bonding method for thermoplastic microfluidic devices was developed by combining an interference fit with a thermal treatment at low pressure. This involved a process of first injection molding thermoplastic substrates with a microchannel structure, and then performing bonding experiments at different bonding conditions. The results indicated the successful bonding of microchannels over a wide range of bonding pressures with the help of the interference fit. The study also determined additional advantages of the proposed bonding method by comparing the method with the conventional thermal bonding method.

3.
Bioprocess Biosyst Eng ; 38(2): 299-305, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25135315

RESUMO

A Bacillus species that produces 2,3-butanediol (2,3-BD), termed BRC1, was newly isolated, and a 2,3-BD dehydrogenase (Bdh) from this species was identified and characterized at the molecular and biochemical level. Sequence analysis revealed that Bdh is homologous to D-2,3-BD dehydrogenases. An analysis of the enzymatic properties of Bdh overexpressed in Escherichia coli confirmed the molecular results, showing preferred activity toward D-2,3-BD. Optimum pH, temperature, and kinetics determined for reductive and oxidative reactions support the preferential production of 2,3-BD during cell growth. Overexpression of bdh under the control of a xylose-inducible promoter resulted in increased enzyme activity and enhanced 2,3-BD production in Bacillus sp. BRC1. Additionally, a hydrolysate of cellulosic material, (empty palm fruit bunches), was successfully used for the enhanced production of 2,3-BD in the recombinant Bacillus strain.


Assuntos
Oxirredutases do Álcool/metabolismo , Arecaceae/microbiologia , Bacillus/fisiologia , Butileno Glicóis/isolamento & purificação , Butileno Glicóis/metabolismo , Frutas/microbiologia , Oxirredutases do Álcool/genética , Bacillus/classificação , Melhoramento Genético/métodos , Hidrólise , Especificidade da Espécie
4.
J Ind Microbiol Biotechnol ; 41(9): 1425-33, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25037723

RESUMO

Klebsiella pneumoniae synthesize large amounts of L-2,3-butanediol (L-2,3-BD), but the underlying mechanism has been unknown. In this study, we provide the first identification and characterization of an L-2,3-BD dehydrogenase from K. pneumoniae, demonstrating its reductive activities toward diacetyl and acetoin, and oxidative activity toward L-2,3-BD. Optimum pH, temperature, and kinetics determined for reductive and oxidative reactions support the preferential production of 2,3-BD during cell growth. Synthesis of L-2,3-BD was remarkably enhanced by increasing gene dosage, reaching levels that, to the best of our knowledge, are the highest achieved to date.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Butileno Glicóis/metabolismo , Butiril-CoA Desidrogenase/química , Butiril-CoA Desidrogenase/metabolismo , Klebsiella pneumoniae/enzimologia , Acetoína/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Butiril-CoA Desidrogenase/genética , Estabilidade Enzimática , Klebsiella pneumoniae/química , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência
5.
J Ind Microbiol Biotechnol ; 41(8): 1259-66, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24841211

RESUMO

The acetolactate synthase (als)-deficient mutant of Klebsiella pneumoniae fails to produce 1,3-propanediol (1,3-PD) or 2,3-butanediol (2,3-BD), and is defective in glycerol metabolism. In an effort to recover production of the industrially valuable 1,3-PD, we introduced the Zymomonas mobilis pyruvate decarboxylase (pdc) and aldehyde dehydrogenase (aldB) genes into the als-deficient mutant to activate the conversion of pyruvate to ethanol. Heterologous expression of pdc and aldB efficiently recovered glycerol metabolism in the 2,3-BD synthesis-defective mutant, enhancing the production of 1,3-PD by preventing the accumulation of pyruvate. Production of 1,3-PD in the pdc- and aldB-expressing als-deficient mutant was further enhanced by increasing the aeration rate. This system uses metabolic engineering to produce 1,3-PD while minimizing the generation of 2,3-BD, offering a breakthrough for the industrial production of 1,3-PD from crude glycerol.


Assuntos
Aldeído Desidrogenase/metabolismo , Reatores Biológicos , Vias Biossintéticas/fisiologia , Klebsiella pneumoniae/fisiologia , Propilenoglicóis/metabolismo , Piruvato Descarboxilase/metabolismo , Zymomonas/enzimologia , Acetolactato Sintase/deficiência , Etanol/metabolismo , Glicerol/metabolismo , Microbiologia Industrial/métodos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Engenharia Metabólica/métodos , Ácido Pirúvico/metabolismo
6.
Biotechnol Lett ; 36(1): 57-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24078128

RESUMO

Klebsiella pneumoniae was engineered to produce 2-butanol from crude glycerol as a sole carbon source by expressing acetolactate synthase (ilvIH), keto-acid reducto-isomerase (ilvC) and dihydroxy-acid dehydratase (ilvD) from K. pneumoniae, and α-ketoisovalerate decarboxylase (kivd) and alcohol dehydrogenase (adhA) from Lactococcus lactis. Engineered K. pneumonia, ∆ldhA/pBR-iBO (ilvIH­ilvC­ilvD­kivd­adhA), produced 2-butanol (160 mg l−1) from crude glycerol. To increase the yield of 2-butanol, we eliminated the 2,3-butanediol pathway from the recombinant strain by inactivating α-acetolactate decarboxylase (adc). This further engineering step improved the yield of 2-butanol from 160 to 320 mg l−1. This represents the first successful attempt to produce 2-butanol from crude glycerol.


Assuntos
Butanóis/metabolismo , Glicerol/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Reatores Biológicos , Butanóis/análise , Fermentação , Engenharia Genética
7.
Biotechnol Biofuels ; 6(1): 170, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24286374

RESUMO

BACKGROUND: Empty fruit bunch (EFB) has many advantages, including its abundance, the fact that it does not require collection, and its year-round availability as a feedstock for bioethanol production. But before the significant costs incurred in ethanol production from lignocellulosic biomass can be reduced, an efficient sugar fractionation technology has to be developed. To that end, in the present study, an NaOH-catalyzed steam pretreatment process was applied in order to produce ethanol from EFB more efficiently. RESULTS: The EFB pretreatment conditions were optimized by application of certain pretreatment variables such as, the NaOH concentrations in the soaking step and, in the steam step, the temperature and time. The optimal conditions were determined by response surface methodology (RSM) to be 3% NaOH for soaking and 160°C, 11 min 20 sec for steam pretreatment. Under these conditions, the overall glucan recovery and enzymatic digestibility were both high: the glucan and xylan yields were 93% and 78%, respectively, and the enzymatic digestibility was 88.8% for 72 h using 40 FPU/g glucan. After simultaneous saccharification and fermentation (SSF), the maximum ethanol yield and concentration were 0.88 and 29.4 g/l respectively. CONCLUSIONS: Delignification (>85%) of EFB was an important factor in enzymatic hydrolysis using CTec2. NaOH-catalyzed steam pretreatment, which can remove lignin efficiently and requires only a short reaction time, was proven to be an effective pretreatment technology for EFB. The ethanol yield obtained by SSF, the key parameter determining the economics of ethanol, was 18% (w/w), equivalent to 88% of the theoretical maximum yield, which is a better result than have been reported in the relevant previous studies.

8.
Appl Biochem Biotechnol ; 170(8): 1807-14, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23754558

RESUMO

The concentration of ethanol produced from lignocellulosic biomass should be at least 40 g l(-1) [about 5 % (v/v)] to minimize the cost of distillation process. In this study, the conditions for the simultaneous saccharification and fermentation (SSF) at fed-batch mode for the production of ethanol from alkali-pretreated empty palm fruit bunch fibers (EFB) were investigated. Optimal conditions for the production of ethanol were identified as temperature, 30 °C; enzyme loading, 15 filter paper unit g(-1) biomass; and yeast (Saccharomyces cerevisiae) loading, 5 g l(-1) of dry cell weight. Under these conditions, an economical ethanol concentration was achieved within 17 h, which further increased up to 62.5 g l(-1) after 95 h with 70.6 % of the theoretical yield. To our knowledge, this is the first report to evaluate the economic ethanol production from alkali-pretreated EFB in fed-batch SSF using S. cerevisiae.


Assuntos
Álcalis/química , Araceae/química , Araceae/microbiologia , Etanol/metabolismo , Frutas/química , Frutas/microbiologia , Saccharomyces cerevisiae/fisiologia , Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos/microbiologia , Metabolismo dos Carboidratos , Proliferação de Células , Celulose/metabolismo , Etanol/isolamento & purificação , Fermentação , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Temperatura
9.
Appl Biochem Biotechnol ; 169(5): 1531-45, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23322254

RESUMO

Jerusalem artichoke is a low-requirement sugar crop containing cellulose and hemicellulose in the stalk and a high content of inulin in the tuber. However, the lignocellulosic component in Jerusalem artichoke stalk reduces the fermentability of the whole plant for efficient bioethanol production. In this study, Jerusalem artichoke stalk was pretreated sequentially with dilute acid and alkali, and then hydrolyzed enzymatically. During enzymatic hydrolysis, approximately 88 % of the glucan and xylan were converted to glucose and xylose, respectively. Batch and fed-batch simultaneous saccharification and fermentation of both pretreated stalk and tuber by Kluyveromyces marxianus CBS1555 were effectively performed, yielding 29.1 and 70.2 g/L ethanol, respectively. In fed-batch fermentation, ethanol productivity was 0.255 g ethanol per gram of dry Jerusalem artichoke biomass, or 0.361 g ethanol per gram of glucose, with a 0.924 g/L/h ethanol productivity. These results show that combining the tuber and the stalk hydrolysate is a useful strategy for whole biomass utilization in effective bioethanol fermentation from Jerusalem artichoke.


Assuntos
Etanol/metabolismo , Helianthus/química , Kluyveromyces/metabolismo , Caules de Planta/química , Tubérculos/química , Ácidos/química , Álcalis/química , Biocombustíveis , Biomassa , Fermentação , Glucanos/metabolismo , Glucose/biossíntese , Hidrólise , Inulina/metabolismo , Cinética , Lignina/metabolismo , Xilanos/metabolismo , Xilose/biossíntese
10.
Lab Chip ; 12(15): 2672-7, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22592893

RESUMO

To predict double-emulsion formation in a capillary microfluidic device, a ternary diffuse-interface model is presented. The formation of double emulsions involves complex interfacial phenomena of a three-phase fluid system, where each component can have different physical properties. We use the Navier-Stokes/Cahn-Hilliard model for a general ternary system, where the hydrodynamics is coupled with the thermodynamics of the phase field variables. Our model predicts important features of the double-emulsion formation which was observed experimentally by Utada et al. [Utada et al., Science, 2005, 308, 537]. In particular, our model predicts both the dripping and jetting regimes as well as the transition between those two regimes by changing the flow rate conditions. We also demonstrate that a double emulsion having multiple inner drops can be formed when the outer interface is more stable than the inner interface.

11.
Bioresour Technol ; 109: 229-33, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22306078

RESUMO

Pretreatment processes are key technologies for generating fermentable sugars based on lignocellulosic biomass. In this study, we developed a novel method for empty palm fruit bunch fiber (EPFBF) using sequential pretreatment with dilute acid and then alkali. Dilute sulfuric acid was used in the first step, which removed 90% of the hemicellulose and 32% of the lignin, but left most of the cellulose under the optimum pretreatment condition. Sodium hydroxide was then applied in the second step, which extracted lignin effectively with a 70% delignification yield, partially disrupting the ordered fibrils of the EPFBF and thus enhancing the enzyme digestibility of the cellulose. The sequentially pretreated biomass consisted of 82% cellulose, less than 1% hemicellulose, and 30% lignin content afterward. The pretreated biomasses morphologically revealed rough, porous, and irregularly ordered surfaces for enhancing enzyme digestibility. These results indicate that the sequentially acid/alkali-pretreated EPFBF could be broadly useful as a novel biomass.


Assuntos
Arecaceae/química , Biotecnologia/métodos , Fibras na Dieta/análise , Frutas/química , Hidróxido de Sódio/farmacologia , Ácidos Sulfúricos/farmacologia , Metabolismo dos Carboidratos/efeitos dos fármacos , Celulase/metabolismo , Hidrólise/efeitos dos fármacos , Lignina/isolamento & purificação
12.
Bioprocess Biosyst Eng ; 35(1-2): 19-27, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21909669

RESUMO

Culture conditions for the mass production of three green algae, Chlorella sp., Dunaliella salina DCCBC2 and Dunaliella sp., were optimized using a response surface methodology (RSM). A central composite design was applied to investigate the effects of initial pH, nitrogen and phosphate concentrations on the cultivation of microalgae. The optimal growth conditions estimated from the design are as follows: Chlorella sp. (initial pH 7.2, ammonium 17 mM, phosphate 1.2 mM), D. salina DCCBC2 (initial pH 8.0, nitrate 3.3 mM, phosphate 0.0375 mM) and Dunaliella sp. (initial pH 8.0, nitrate 3.7 mM, phosphate 0.17 mM). Culturing the microalgae with the optimized conditions confirmed that the maximum growth rates were attained for these parameters. The optimum CO(2) concentrations of Chlorella sp., D. salina DCCBC2 and Dunaliella sp. were 1.0, 3.0 and 1.0% (v/v), respectively. The specific growth rates (µ) of Chlorella sp., D. salina DCCBC2 and Dunaliella sp. were 0.58, 0.78 and 0.56 day(-1), respectively, and the biomass productivities were 0.28, 0.54 and 0.30 g dry cell wt l(-1) day(-1), respectively. The CO(2) fixation rates of Chlorella sp., D. salina DCCBC2 and Dunaliella sp. were 42.8, 90.9 and 45.5 mg l(-1) day(-1), respectively. Mixotrophic cultivation of Chlorella sp. with glucose increased biomass productivity from 0.28 to 0.51 g dry cell wt l(-1) day(-1). However, D. salina DCCBC2 and Dunaliella sp. were not stimulated by several organic compounds tested.


Assuntos
Biomassa , Reatores Biológicos/microbiologia , Clorófitas/fisiologia , Microalgas/fisiologia , Nitrogênio/metabolismo , Fosfatos/metabolismo , Técnicas de Cultura de Células/métodos , Proliferação de Células , Concentração de Íons de Hidrogênio , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...