Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7390, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548803

RESUMO

Intravesical treatment using either reovirus or natural killer (NK) cells serves as an efficient strategy for the treatment of bladder cancer cells (BCCs); however, corresponding monotherapies have often shown modest cytotoxicity. The potential of a locoregional combination using high-dose reovirus and NK cell therapy in an intravesical approach has not yet been studied. In this study, we evaluated the effectiveness of reoviruses and expanded NK cells (eNK) as potential strategies for the treatment of bladder cancer. The anti-tumor effects of mono-treatment with reovirus type 3 Dearing strain (RC402 and RP116) and in combination with interleukin (IL)-18/-21-pretreated eNK cells were investigated on BCC lines (5637, HT-1376, and 253J-BV) using intravesical therapy to simulate in vitro model. RP116 and IL-18/-21-pretreated eNK cells exhibited effective cytotoxicity against grade 1 carcinoma (5637 cells) when used alone, but not against HT-1376 (grade 2 carcinoma) and 253J-BV cells (derived from a metastatic site). Notably, combining RP116 with IL-18/-21-pretreated eNK cells displayed effective cytotoxicity against both HT-1376 and 253J-BV cells. Our findings underscore the potential of a combination therapy using reoviruses and NK cells as a promising strategy for treating bladder cancer.


Assuntos
Carcinoma , Orthoreovirus , Reoviridae , Neoplasias da Bexiga Urinária , Humanos , Interleucina-18/farmacologia , Interleucina-18/uso terapêutico , Neoplasias da Bexiga Urinária/patologia , Células Matadoras Naturais/patologia , Terapia Combinada
2.
Artigo em Inglês | MEDLINE | ID: mdl-37632203

RESUMO

Rare but consistent reports of abscopal remission in patients challenge the notion that radiotherapy (RT) is a local treatment; radiation-induced cancer cell death can trigger activation and recruitment of dendritic cells to the primary tumor site, which subsequently initiates systemic immune responses against metastatic lesions. Although this abscopal effect was initially considered an anomaly, combining RT with immune checkpoint inhibitor therapies has been shown to greatly improve the incidence of abscopal responses via modulation of the immunosuppressive tumor microenvironment. Preclinical studies have demonstrated that nanomaterials can further improve the reliability and potency of the abscopal effect for various different types of cancer by (1) altering the cell death process to be more immunogenic, (2) facilitating the capture and transfer of tumor antigens from the site of cancer cell death to antigen-presenting cells, and (3) co-delivering immune checkpoint inhibitors along with radio-enhancing agents. Several unanswered questions remain concerning the exact mechanisms of action for nanomaterial-enhanced RT and for its combination with immune checkpoint inhibition and other immunostimulatory treatments in clinically relevant settings. The purpose of this article is to summarize key recent developments in this field and also highlight knowledge gaps that exist in this field. An improved mechanistic understanding will be critical for clinical translation of nanomaterials for advanced radio-immunotherapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Reprodutibilidade dos Testes , Imunoterapia , Neoplasias/radioterapia , Nanotecnologia , Nanoestruturas/uso terapêutico , Microambiente Tumoral
3.
Acta Pharm Sin B ; 13(12): 4983-4998, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045059

RESUMO

Lipid-coated microbubbles are widely used as an ultrasound contrast agent, as well as drug delivery carriers. However, the two main limitations in ultrasound diagnosis and drug delivery using microbubbles are the short half-life in the blood system, and the difficulty of surface modification of microbubbles for active targeting. The exosome, a type of extracellular vesicle, has a preferentially targeting ability for its original cell. In this study, exosome-fused microbubbles (Exo-MBs) were developed by embedding the exosome membrane proteins into microbubbles. As a result, the stability of Exo-MBs is improved over the conventional microbubbles. On the same principle that under the exposure of ultrasound, microbubbles are cavitated and self-assembled into nano-sized particles, and Exo-MBs are self-assembled into exosome membrane proteins-embedded nanoparticles (Exo-NPs). The Exo-NPs showed favorable targeting properties to their original cells. A photosensitizer, chlorin e6, was loaded into Exo-MBs to evaluate therapeutic efficacy as a drug carrier. Much higher therapeutic efficacy of photodynamic therapy was confirmed, followed by cancer immunotherapy from immunogenic cell death. We have therefore developed a novel ultrasound image-guided drug delivery platform that overcomes the shortcomings of the conventional ultrasound contrast agent and is capable of simultaneous photodynamic therapy and cancer immunotherapy.

4.
Mater Horiz ; 10(10): 4532-4540, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37559559

RESUMO

Natural killer (NK) cells are innate cytotoxic lymphocytes exerting cytotoxicity against virally infected cells and tumor cells. NK cell cytotoxicity is primarily determined by biochemical signals received from ligands expressed on target cell surfaces, but it is also possible that biophysical environments of tumor cells, such as nanoscale surface topography typically existing on extracellular matrixes (ECMs) or cell morphology determined by ECM spaces or cell density, regulate NK cell cytotoxicity. In this study, micro/nanofabrication technology was applied to examine this possibility. Tumor cells were plated on flat or nanogrooved surfaces, or micropatterned into circular or elliptical geometries, and the effects of surface topography and tumor cell morphology on NK cell cytotoxicity were investigated. NK cells exhibited significantly higher cytotoxicity against tumor cells on nanogrooved surfaces or tumor cells in elliptical patterns than tumor cells on flat surfaces or tumor cells in circular patterns, respectively. The amounts of stress fiber formation in tumor cells positively correlated with NK cell cytotoxicity, indicating that increased cellular tension of tumor cells, either mediated by nanogrooved surfaces or elongated morphologies, was a key factor regulating NK cell cytotoxicity. These results may provide insight into the design of NK cell-based cancer immunotherapy.


Assuntos
Citotoxicidade Imunológica , Neoplasias , Humanos , Forma Celular , Células Matadoras Naturais , Imunoterapia/métodos
5.
Small ; 19(47): e2301377, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37491793

RESUMO

Cancer immunotherapy is a promising therapy to treat cancer patients with minimal toxicity, but only a small fraction of patients responded to it as a monotherapy. In this study, a strategy to boost therapeutic efficacy by combining an immunotherapy based on ex vivo expanded tumor-reactive T cells is devised, or adoptive cell therapy (ACT), with photothermal therapy (PTT). Smart gold nanoparticles (sAuNPs), which aggregates to form gold nanoclusters in the cells, are loaded into T cells, and their photothermal effects within T cells are confirmed. When transferred into tumor-bearing mice, large number of sAuNP-carrying T cells successfully infiltrate into tumor tissues and exert anti-tumor activity to suspend tumor growth, but over time tumor cells evade and regrow. Of note, ≈20% of injected doses of sAuNPs are deposited in tumor tissues, suggesting T cells are an efficient nanoparticle tumor delivery vehicle. When T cells no longer control tumor growth, PTT is performed to further eliminate tumors. In this manner, ACT and PTT are temporally coupled, and the combined immuno-photothermal treatment demonstrated significantly greater therapeutic efficacy than the monotherapy.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Animais , Camundongos , Ouro/uso terapêutico , Linfócitos T , Nanopartículas Metálicas/uso terapêutico , Neoplasias/tratamento farmacológico , Terapia Combinada , Fototerapia , Linhagem Celular Tumoral
6.
Sci Rep ; 13(1): 9493, 2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37302991

RESUMO

Natural killer (NK) cells are promising tool for cancer treatment. Methods have been developed for large-scale NK cell expansion, including feeder cell-based methods or methods involving stimulation with NK cell activating signals, such as anti-CD16 antibodies. Different clones of anti-CD16 antibodies are available; however, a comprehensive comparison of their differential effects on inducing NK cell activation and expansion has not been conducted among these various clones under the same experimental conditions. Herein, we found that the NK cell expansion rate differed depending on the various anti-CD16 antibodies (CB16, 3G8, B73.1, and MEM-154) coated on microbeads when stimulated with genetically engineered feeder cells, K562­membrane-bound IL­18, and mbIL­21 (K562­mbIL­18/-21). Only the CB16 clone combination caused enhanced NK cell expansion over K562­mbIL­18/-21 stimulation alone with similar NK cell functionality. Treatment with the CB16 clone once on the initial day of NK cell expansion was sufficient to maximize the combination effect. Overall, we developed a more enhanced NK expansion system by merging a feeder to effectively stimulate CD16 with the CB16 clone.


Assuntos
Engenharia Genética , Células Matadoras Naturais , Ciclo Celular , Proliferação de Células , Células Alimentadoras
7.
Small ; 19(43): e2302809, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37365959

RESUMO

Accurately analyzing the functional activities of natural killer (NK) cells in clinical diagnosis remains challenging due to their coupling with other immune effectors. To address this, an integrated immune cell separator is required, which necessitates a streamlined sample preparation workflow including immunological cell isolation, removal of excess red blood cells (RBCs), and buffer exchange for downstream analysis. Here, a self-powered integrated magneto-microfluidic cell separation (SMS) chip is presented, which outputs high-purity target immune cells by simply inputting whole blood. The SMS chip intensifies the magnetic field gradient using an iron sphere-filled inlet reservoir for high-performance immuno-magnetic cell selection and separates target cells size-selectively using a microfluidic lattice for RBC removal and buffer exchange. In addition, the chip incorporates self-powered microfluidic pumping through a degassed polydimethylsiloxane chip, enabling the rapid isolation of NK cells at the place of blood collection within 40 min. This chip is used to isolate NK cells from whole blood samples of hepatocellular cancer patients and healthy volunteers and examined their functional activities to identify potential abnormalities in NK cell function. The SMS chip is simple to use, rapid to sort, and requires small blood volumes, thus facilitating the use of immune cell subtypes for cell-based diagnosis.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Humanos , Separação Celular , Eritrócitos
8.
Mater Horiz ; 10(6): 2215-2225, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37000519

RESUMO

In this work, we describe the development of an implantable ionic device that can deliver a spatially targeted light source to tumor tissues in a controllable manner. The motivation behind our approach is to overcome certain limitations of conventional approaches where light is delivered from the outside of the body and only achieves low penetration depths. Also, to avoid the issues that come from the periodic need to replace the device's battery, we utilize a wireless power transfer system synchronized with light operation in an implantable structure. In our testing of this implanted, soft ionic, gel-based device that receives power wirelessly, we were able to clearly observe its capability to effectively deliver light in a harmonious and stable configuration to adjacent tissues. This approach reduces the mechanical inconsistencies seen in conventional systems that are induced by mismatches between the mechanical strength of conventional metallic components and that of biological tissues. The light delivering performance of our device was studied in depth under the various conditions set by adjusting the area of the gel receivers, the ion concentration and the ion types used in the gel components. The enhanced antitumor effects of our device were observed through in vitro cell tests, in comparison with treatments using the conventional approach of using direct light from outside the body. Full encapsulation using biocompatible elastomers enables our device to provide good functional stability, while implantation for about 3 weeks in the in vivo model showed the effective targeted photodynamic treatments made possible by our approach. Our advanced approach of designing the implantable platform based on ionic gel components allows us to iteratively irradiate a target with light whenever required, making the technology particularly suited to long-term treatment of residual tumors while facilitating further practical and clinical development.


Assuntos
Fotoquimioterapia , Tecnologia sem Fio , Próteses e Implantes , Fontes de Energia Elétrica , Tecnologia
9.
Ann Lab Med ; 42(6): 638-649, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35765872

RESUMO

Background: Adoptive cell therapy using umbilical cord blood (UCB)-derived allogeneic natural killer (NK) cells has shown encouraging results. However, because of the insufficient availability of NK cells and limited UCB volume, more effective culture methods are required. NK cell expansion and functionality are largely affected by the culture medium. While human serum is a major affecting component in culture media, the way it regulates NK cell functionality remains elusive. We elucidated the effects of different culture media and human serum supplementation on UCB NK cell expansion and functionality. Methods: UCB NK cells were cultured under stimulation with K562-OX40L-mbIL-18/21 feeder cells and IL-2 and IL-15 in serum-containing and serum-free culture media. The effects of the culture media and human serum supplementation on NK cell expansion and cytotoxicity were evaluated by analyzing the expansion rate, activating and inhibitory receptor levels, and the cytotoxicity of the UCB NK cells. Results: The optimal medium for NK cell expansion was Dulbecco's modified Eagle's medium/Ham's F12 with supplements and that for cytotoxicity was AIM V supplemented with Immune Cell Serum Replacement. Shifting media is an advantageous strategy for obtaining several highly functional UCB NK cells. Live cell imaging and killing time measurement revealed that human serum enhanced NK cell proliferation but delayed target recognition, resulting in reduced cytotoxicity. Conclusions: Culture medium supplementation with human serum strongly affects UCB NK cell expansion and functionality. Thus, culture media should be carefully selected to ensure both NK cell quantity and quality for adoptive cell therapy.


Assuntos
Células Matadoras Naturais , Proliferação de Células , Meios de Cultura/farmacologia , Humanos
10.
J Control Release ; 343: 379-391, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124129

RESUMO

Recent clinical successes of chimeric antigen receptor (CAR) T cell therapy have led the booming of developments in cancer immunotherapy utilizing ex vivo engineered immune cells such as T cells and natural killer (NK) cells. However, a number of issues need to be resolved for this novel therapy to become widely applicable to cancer patients as current CAR-T cell therapies are only successful in treating some blood cancers, and economically not feasible for many patients. In this review, we describe various nanomaterial-based approaches developed to overcome current limitations in ex vivo engineered T/NK cells, along with key biological principles underlying each approach. First, nanomaterials developed to improve ex vivo expansion of T/NK cells and the basic principles of T/NK cell activation for designing nanomaterials are summarized. Second, nanomaterial-based gene delivery methods to generate genetically engineered T/NK cells are discussed with an emphasis on challenges in improving transfection efficacy. Third, nanomaterials loaded to T/NK cells to enhance their anti-tumor functions and to overcome tumor microenvironment are described with key biological characteristics of T/NK cells, which are essential for nanomaterial loading and drug release from the nanomaterials. In particular, we comment on similarities and differences of methods developed for T cells and NK cells based on the biological characteristics of each cell type.


Assuntos
Nanoestruturas , Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia/métodos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais , Neoplasias/patologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Microambiente Tumoral
11.
Adv Mater ; 34(14): e2108446, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35032043

RESUMO

Since the pioneering discovery of a protein bound to poly(ethylene glycol), the utility of protein-polymer conjugates (PPCs) is rapidly expanding to currently emerging applications. Photoinduced energy/electron-transfer reversible addition-fragmentation chain-transfer (PET-RAFT) polymerization is a very promising method to prepare structurally well-defined PPCs, as it eliminates high-cost and time-consuming deoxygenation processes due to its oxygen tolerance. However, the oxygen-tolerance behavior of PET-RAFT polymerization is not well-investigated in aqueous environments, and thereby the preparation of PPCs using PET-RAFT polymerization needs a substantial amount of sacrificial reducing agents or inert-gas purging processes. Herein a novel water-soluble and biocompatible organic photocatalyst (PC) is reported, which enables visible-light-driven additive-free "grafting-from" polymerizations of a protein in ambient and aqueous environments. Interestingly, the developed PC shows unconventional "oxygen-acceleration" behavior for a variety of acrylic and acrylamide monomers in aqueous conditions without any additives, which are apparently distinct from previously reported systems. With such a PC, "grafting-from" polymerizations are successfully performed from protein in ambient buffer conditions under green light-emitting diode (LED) irradiation, which result in various PPCs that have neutral, anionic, cationic, and zwitterionic polyacrylates, and polyacrylamides. It is believed that this PC will be widely employed for a variety of photocatalysis processes in aqueous environments, including the living cell system.


Assuntos
Polímeros , Água , Oxigênio , Polimerização , Proteínas
12.
Cancer Immunol Immunother ; 71(3): 613-625, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34282497

RESUMO

BACKGROUND: Natural killer (NK) cell-based immunotherapy is a promising treatment approach for multiple myeloma (MM), but obtaining a sufficient number of activated NK cells remains challenging. Here, we report an improved method to generate ex vivo expanded NK (eNK) cells from MM patients based on genetic engineering of K562 cells to express OX40 ligand and membrane-bound (mb) IL-18 and IL-21. METHODS: K562-OX40L-mbIL-18/-21 cells were generated by transducing K562-OX40L cells with a lentiviral vector encoding mbIL-18 and mbIL-21, and these were used as feeder cells to expand NK cells from peripheral blood mononuclear cells of healthy donors (HDs) and MM patients in the presence of IL-2/IL-15. Purity, expansion rate, receptor expression, and functions of eNK cells were determined over four weeks of culture. RESULTS: NK cell expansion was enhanced by short exposure of soluble IL-18 and IL-21 with K562-OX40L cells. Co-culture of NK cells with K562-OX40L-mbIL-18/-21 cells resulted in remarkable expansion of NK cells from HDs (9,860-fold) and MM patients (4,929-fold) over the 28-day culture period. Moreover, eNK cells showed increased expression of major activation markers and enhanced cytotoxicity towards target K562, U266, and RPMI8226 cells. CONCLUSIONS: Our data suggest that genetically engineered K562 cells expressing OX40L, mbIL-18, and mbIL-21 improve the expansion of NK cells, increase activation signals, and enhance their cytolytic activity towards MM cells.


Assuntos
Citotoxicidade Imunológica , Interleucina-18/metabolismo , Interleucinas/metabolismo , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Mieloma Múltiplo/imunologia , Ligante OX40/metabolismo , Células Cultivadas , Técnicas de Cocultura , Citotoxicidade Imunológica/genética , Expressão Gênica , Humanos , Imunofenotipagem , Interleucina-18/genética , Interleucinas/genética , Células K562 , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Ligante OX40/genética , Transdução Genética , Transgenes
13.
Stem Cell Res ; 56: 102510, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34438162

RESUMO

Here we described two human induced pluripotent stem cell (hiPSC) lines from peripheral blood mononuclear cells (PBMCs) of idiopathic autism spectrum disorder (ASD) patients through forced expression of OCT4, SOX2, KLF4, and c-MYC. The hiPSC lines displayed morphology, gene expression patterns, and pluripotential differentiation potentials similar to those of human embryonic stem cells (hESCs). The hiPSC lines from idiopathic ASD patients might be useful to unveil the underlying mechanism of idiopathic ASD and finding its therapeutics.


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Humanos , Fator 4 Semelhante a Kruppel , Leucócitos Mononucleares
14.
Cancer Med ; 10(16): 5589-5598, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34240815

RESUMO

Patient-derived cancer models that reconstitute the characteristics of the tumor microenvironment may facilitate efforts in precision immune-oncology and the discovery of effective anticancer therapies. Organoids that have recently emerged as robust preclinical models typically contain tumor epithelial cells and lack the native tumor immune microenvironment. A patient-derived organotypic tumor spheroid (PDOTS) is a novel and innovative ex vivo system that retains key features of the native tumor immune microenvironment. Here, we established and characterized a series of colorectal cancer PDOTS models for use as a preclinical platform for testing effective immunotherapy and its combinations with other drugs. Partially dissociated (> 100 µm in diameter) tumor tissues were embedded in Matrigel-containing organoid media and subsequently formed into organoid structures within 3 to 7 days of culture. The success rate of growing PDOTS from fresh tissues was ~86%. Morphological analysis showed that the PDOTSs varied in size and structure. Immunofluorescence and flow cytometry analysis revealed that the PDOTSs retained autologous tumor-infiltrating lymphoid cells and tumor-infiltrating lymphoid cells were continually decreased through serial passages. Notably, PDOTSs from tumors from a high-level microsatellite instability-harboring patient were sensitive to anti-PD-1 or anti-PD-L1 antibodies. Our results demonstrate that the PDOTS model in which the tumor immune microenvironment is preserved may represent an advantageous ex vivo system to develop effective immune therapeutics.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Inibidores de Checkpoint Imunológico/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Instabilidade de Microssatélites , Cultura Primária de Células/métodos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/imunologia , Esferoides Celulares/patologia , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/imunologia , Células Tumorais Cultivadas/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
15.
ACS Biomater Sci Eng ; 7(7): 3082-3087, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34125522

RESUMO

Cells in 3D behave differently than cells in 2D. We develop a new method for the fabrication of 2D and 3D cell cluster arrays on an identical substrate using a cell-friendly photoresist, which enables comparative study between cells in 2D and 3D cell clusters. The fabricated cell cluster arrays maintain their structure up to 3 days with good viability. Using this method, 2D and 3D cancer cell clusters with comparable sizes are fabricated, and natural killer (NK) cell cytotoxicity assays are performed to assess how dimensionality of cancer cell clusters influence their susceptibility to immune cell-mediated killing.


Assuntos
Células Matadoras Naturais , Linhagem Celular Tumoral
16.
ACS Sens ; 6(3): 693-697, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33606518

RESUMO

Natural killer (NK) cells are a subset of innate lymphoid cells playing an important role in immune surveillance and early defense against infection and cancer. They recognize and directly kill infected or transformed cells. At the same time, they produce various cytokines and chemokines to regulate other immune cells. NK cell activity can be a useful marker for health screenings because impaired NK cell functions may indicate a more susceptible environment for infection or tumor development. Currently, most NK cell activity assays are focused on measuring either cytokine secretion, in particular, interferon γ (IFN-γ), or cytotoxicity against target cells such as K562, thus only providing partial information on NK cell activity. In order to develop a comprehensive test for measuring NK cell function, cytotoxicity and cytokine secretion ability should be measured simultaneously. In addition, current NK cell assays are performed by stimulating NK cells with cocktails of cytokines, antibody-coated beads, or live target cells. In this study, we developed multifunctional microparticles for NK cell activity assay (MNAs) that allow simultaneous stimulation and sensing various NK cell activities, including cytokine secretion and cytotoxicity. The surfaces of MNAs are decorated with multiple functional biomolecules, including antibodies that stimulate NK cells by engaging NK cell activating receptors, antibodies that can capture cytokines secreted by NK cells, and a peptide sensor that reacts with granzyme B, a key molecule released by NK cells for cytotoxicity. The performances of MNAs are assessed using flow cytometry and live cell imaging. NK cell activity is measured by simply mixing MNAs with NK cells and performing flow cytometry, and the results are comparable to those measured by standard NK cell activity assays.


Assuntos
Imunidade Inata , Células Matadoras Naturais , Citocinas , Citometria de Fluxo , Interferon gama
17.
Front Immunol ; 11: 1851, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922399

RESUMO

Background: Measurement of natural killer (NK) cell function has important clinical utility in several diseases. Although the flow cytometry (FC)-based 4-h NK cytotoxicity assay using peripheral blood mononuclear cells (PBMCs) in the clinical laboratory has been used for this purpose, this assay requires large amounts of blood and a rapid PBMC isolation step. Here, we developed an FC-based overnight NK cytotoxicity assay using whole blood (WB), and applied it to patients with liver diseases. Methods: Peripheral blood of healthy volunteers (n = 28) and patients with liver diseases, including hepatocellular carcinoma (n = 19) and liver cirrhosis (n = 7), was analyzed for complete blood count, absolute NK cell count, and NK cell activity (NKA). NKA was evaluated in three assay types: an FC-based overnight WB NK cytotoxicity assay using carboxyfluorescein diacetate succinimidyl ester-labeled K562 cells in the presence of various cytokine combinations [including interleukin (IL)-2, IL-18, and IL-21], an FC-based 4-h PBMC NK cytotoxicity assay, and an FC-based CD107a degranulation assay using WB and PBMCs. Results: Optimal cytokine combinations for NK cell activation in WB were determined (IL-2/IL-18, IL-2/IL-21, and IL-2/IL-18/IL-21). A good correlation was observed between WB and PBMC NK cytotoxicity assays; absolute NK cell counts were better correlated with the WB NK cytotoxicity assay than with the PBMC NK cytotoxicity assay. This WB NK cytotoxicity assay showed that patients with liver diseases had significantly lower NK cytotoxicity than healthy volunteers, under stimulation with various cytokines (p < 0.001). Conclusion: The proposed FC-based overnight WB NK cytotoxicity assay correlates well with the conventional 4-h PBMC NK cytotoxicity assay, demonstrating future potential as a supportive assay for clinical laboratory research and observational studies.


Assuntos
Citocinas/imunologia , Testes Imunológicos de Citotoxicidade/métodos , Citometria de Fluxo/métodos , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Adv Sci (Weinh) ; 6(14): 1900566, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31380216

RESUMO

Dynamic adhesion and detachment of subcellular regions occur during cell migration, thus a technique allowing precise control of subcellular detachment of cells will be useful for cell migration study. Previous methods for cell detachment were developed either for harvesting cells or cell sheets attached on surfaces with low resolution patterning capability, or for detaching subcellular regions located on predefined electrodes. In this paper, a method that allows in situ subcellular detachment of cells with ≈1.5 µm critical feature size while observing cells under a fluorescence microscope is introduced using a cell-friendly photoresist and spatially modulated light. Using this method, a single cell, regions in cell sheets, and a single focal adhesion complex within a cell are successfully detached. Furthermore, different subcellular regions of migrating cells are detached and changes in cell polarity and migration direction are quantitatively analyzed. This method will be useful for many applications in cell detachment, in particular when subcellular resolution is required.

19.
Sci Rep ; 6: 23412, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26996137

RESUMO

Stiff nuclei in cell-dense microenvironments may serve as distinct biomechanical cues for cell migration, but such a possibility has not been tested experimentally. As a first step addressing this question, we altered nuclear stiffness of endothelial cells (ECs) by reducing the expression of A-type lamins using siRNA, and investigated the migration of T cells on and under EC layers. While most T cells crawling on control EC layers avoided crossing over EC nuclei, a significantly higher fraction of T cells on EC layers with reduced expression of A-type lamins crossed over EC nuclei. This result suggests that stiff EC nuclei underlying T cells may serve as "duro-repulsive" cues to direct T cell migration toward less stiff EC cytoplasm. During subendothelial migration under EC layers with reduced expression of A-type lamins, T cells made prolonged contact and substantially deformed EC nuclei, resulting in reduced speed and directional persistence. This result suggests that EC nuclear stiffness promotes fast and directionally persistent subendothelial migration of T cells by allowing minimum interaction between T cells and EC nuclei.


Assuntos
Movimento Celular , Células Endoteliais/fisiologia , Lamina Tipo A/fisiologia , Linfócitos T/fisiologia , Animais , Adesão Celular , Núcleo Celular/metabolismo , Células Cultivadas , Células Endoteliais/ultraestrutura , Lamina Tipo A/metabolismo , Glicoproteínas de Membrana , Camundongos , Linfócitos T/citologia
20.
Biol Pharm Bull ; 31(7): 1337-42, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18591771

RESUMO

We tested the effects of SI000413, a new formula, consisting of Pyrolae herba and Trachelospermi caulis, on type II collagen-induced arthritis (CIA). CIA was induced in DBA/1J mice by immunization with bovine type II collagen (CII) on days 1 and 21. SI000413 was orally administered 3 times per week throughout the experiment and indomethacin was served as a positive control. Clinical scores, the count of arthritic legs, levels of interleukin 6 (IL-6) and anti-CII antibody, and lymphocyte subsets in blood were examined. SI000413 suppressed CIA development in a dose dependent manner and reduced the incidence of arthritic legs in mice. Histological analysis showed administration of SI000413 reduced inflammatory signs and cartilage destruction. Serum levels of IL-6 and anti-CII antibody were significantly decreased in SI000413-treated mice and the percentages of CD4 T cell, CD8 T cell and B cell in blood were restored to normal levels. In conclusion, we demonstrate that SI000413 ameliorates CIA both clinically and histologically and inhibits the production of anti-CII antibody and pro-inflammatory cytokine in the CIA mouse. These findings suggest that SI000413 is a potential new therapeutic herbal formula for the treatment of RA.


Assuntos
Antirreumáticos/farmacologia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/prevenção & controle , Colágeno Tipo II , Extratos Vegetais/farmacologia , Preparações de Plantas/farmacologia , Animais , Antirreumáticos/química , Artrite Reumatoide/patologia , Autoanticorpos/análise , Autoanticorpos/biossíntese , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Cartilagem/patologia , Cromatografia Líquida de Alta Pressão , Colágeno Tipo II/imunologia , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Citometria de Fluxo , Furanos/análise , Furanos/isolamento & purificação , Glucosídeos/análise , Glucosídeos/isolamento & purificação , Interleucina-6/análise , Interleucina-6/biossíntese , Articulações/patologia , Subpopulações de Linfócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Extratos Vegetais/química , Preparações de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...