Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 6482, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35444244

RESUMO

Lophotrichous bacteria swim through fluid by rotating their flagellar bundle extended collectively from one pole of the cell body. Cells experience modes of motility such as push, pull, and wrapping, accompanied by pauses of motor rotation in between. We present a mathematical model of a lophotrichous bacterium and investigate the hydrodynamic interaction of cells to understand their swimming mechanism. We classify the swimming modes which vary depending on the bending modulus of the hook and the magnitude of applied torques on the motor. Given the hook's bending modulus, we find that there exist corresponding critical thresholds of the magnitude of applied torques that separate wrapping from pull in CW motor rotation, and overwhirling from push in CCW motor rotation, respectively. We also investigate reoriented directions of cells in three-dimensional perspectives as the cell experiences different series of swimming modes. Our simulations show that the transition from a wrapping mode to a push mode and pauses in between are key factors to determine a new path and that the reoriented direction depends upon the start time and duration of the pauses. It is also shown that the wrapping mode may help a cell to escape from the region where the cell is trapped near a wall.


Assuntos
Flagelos , Natação , Bactérias , Hidrodinâmica , Movimento , Rotação
2.
Bull Math Biol ; 84(1): 9, 2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837544

RESUMO

Bacteria are often exposed to multiple stimuli in complex environments, and their efficient chemotactic decisions are critical to survive and grow in their native environments. Bacterial responses to the environmental stimuli depend on the ratio of their corresponding chemoreceptors. By incorporating the signaling machinery of individual cells, we analyze the collective motion of a population of Escherichia coli bacteria in response to two stimuli, mainly serine and methyl-aspartate (MeAsp), in a one-dimensional and a two-dimensional environment, which is inspired by experimental results in Y. Kalinin et al., J. Bacteriol. 192(7):1796-1800, 2010. Under suitable conditions, we show that if the ratio of the main chemoreceptors of individual cells, namely Tar/Tsr, is less than a specific threshold, the bacteria move to the gradient of serine, and if the ratio is greater than the threshold, the group of bacteria moves toward the gradient of MeAsp. Finally, we examine the theory with Monte Carlo agent-based simulations and verify that our results qualitatively agree well with the experimental results in Y. Kalinin et al. (2010).


Assuntos
Quimiotaxia , Proteínas de Escherichia coli , Proteínas de Bactérias , Quimiotaxia/fisiologia , Escherichia coli/fisiologia , Conceitos Matemáticos , Proteínas Quimiotáticas Aceptoras de Metil , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...