Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 19(28): e2300526, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37010008

RESUMO

Polymer-based nanocomposites are desirable materials for next-generation dielectric capacitors. 2D dielectric nanosheets have received significant attention as a filler. However, randomly spreading the 2D filler causes residual stresses and agglomerated defect sites in the polymer matrix, which leads to the growth of an electric tree, resulting in a more premature breakdown than expected. Therefore, realizing a well-aligned 2D nanosheet layer with a small amount is a key challenge; it can inhibit the growth of conduction paths without degrading the performance of the material. Here, an ultrathin Sr1.8 Bi0.2 Nb3 O10 (SBNO) nanosheet filler is added as a layer into poly(vinylidene fluoride) (PVDF) films via the Langmuir-Blodgett method. The structural properties, breakdown strength, and energy storage capacity of a PVDF and multilayer PVDF/SBNO/PVDF composites as a function of the thickness-controlled SBNO layer are examined. The seven-layered (only 14 nm) SBNO nanosheets thin film can sufficiently prevent the electrical path in the PVDF/SBNO/PVDF composite and shows a high energy density of 12.8 J cm-3 at 508 MV m-1 , which is significantly higher than that of the bare PVDF film (9.2 J cm-3 at 439 MV m-1 ). At present, this composite has the highest energy density among the polymer-based nanocomposites under the filler of thin thickness.

2.
Small ; 18(15): e2104472, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35187776

RESUMO

Ferroelectric and piezoelectric polymers have attracted great attention from many research and engineering fields due to its mechanical robustness and flexibility as well as cost-effectiveness and easy processibility. Nevertheless, the electrical performance of piezoelectric polymers is very hard to reach that of piezoelectric ceramics basically and physically, even in the case of the representative ferroelectric polymer, poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)). Very recently, the concept for the morphotropic phase boundary (MPB), which has been exclusive in the field of high-performance piezoelectric ceramics, has been surprisingly confirmed in P(VDF-TrFE) piezoelectric copolymers by the groups. This study demonstrates the exceptional behaviors reminiscent of MPB and relaxor ferroelectrics in the feature of widely utilized electrospun P(VDF-TrFE) nanofibers. Consequently, an energy harvesting device that exceeds the performance limitation of the existing P(VDF-TrFE) materials is developed. Even the unpoled MPB-based P(VDF-TrFE) nanofibers show higher output than the electrically poled normal P(VDF-TrFE) nanofibers. This study is the first step toward the manufacture of a new generation of piezoelectric polymers with practical applications.

3.
Sci Technol Adv Mater ; 20(1): 758-773, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447955

RESUMO

Mechanical energy harvesting technology converting mechanical energy wasted in our surroundings to electrical energy has been regarded as one of the critical technologies for self-powered sensor network and Internet of Things (IoT). Although triboelectric energy harvesters based on contact electrification have attracted considerable attention due to their various advantages compared to other technologies, a further improvement of the output performance is still required for practical applications in next-generation IoT devices. In recent years, numerous studies have been carried out to enhance the output power of triboelectric energy harvesters. The previous research approaches for enhancing the triboelectric charges can be classified into three categories: i) materials type, ii) device structure, and iii) surface modification. In this review article, we focus on various mechanisms and methods through the surface modification beyond the limitations of structural parameters and materials, such as surficial texturing/patterning, functionalization, dielectric engineering, surface charge doping and 2D material processing. This perspective study is a cornerstone for establishing next-generation energy applications consisting of triboelectric energy harvesters from portable devices to power industries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA