Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 10(1): 219, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937814

RESUMO

As organic photodetectors with less than 1 µm pixel size are in demand, a new way of enhancing the sensitivity of the photodetectors is required to compensate for its degradation due to the reduction in pixel size. Here, we used Ag nanoparticles coated with SiOxNy as a light-absorbing layer to realize the scale-down of the pixel size without the loss of sensitivity. The surface plasmon resonance appeared at the interface between Ag nanoparticles and SiOxNy. The plasmon resonance endowed the organic photodetector with boosted photon absorption and external quantum efficiency. As the Ag nanoparticles with SiOxNy are easily deposited on ITO/SiO2, it can be adapted into various organic color image sensors. The plasmon-supported organic photodetector is a promising solution for realizing color image sensors with high resolution below 1 µm.

3.
Sci Rep ; 7(1): 14146, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29074890

RESUMO

We report on the degradation process by water vapor of hydrogenated amorphous silicon oxynitride (SiON:H) films deposited by plasma-enhanced chemical vapor deposition at low temperature. The stability of the films was investigated as a function of the oxygen content and deposition temperature. Degradation by defects such as pinholes was not observed with transmission electron microscopy. However, we observed that SiON:H film degrades by reacting with water vapor through only interstitial paths and nano-defects. To monitor the degradation process, the atomic composition, mass density, and fully oxidized thickness were measured by using high-resolution Rutherford backscattering spectroscopy and X-ray reflectometry. The film rapidly degraded above an oxygen composition of ~27 at%, below a deposition temperature of ~150 °C, and below an mass density of ~2.15 g/cm3. This trend can be explained by the extents of porosity and percolation channel based on the ring model of the network structure. In the case of a high oxygen composition or low temperature, the SiON:H film becomes more porous because the film consists of network channels of rings with a low energy barrier.

4.
Chin J Nat Med ; 15(8): 561-575, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28939019

RESUMO

Korean oriental medicine prescription is widely used for the treatment of gouty diseases. In the present study, we investigated anti-inflammatory effects of modified Korean herbal formulation, mixed extract of medicinal herbs (MEMH), and its modulatory effects on inflammatory mediators associated with gouty arthritis. Both in vitro and in vivo studies were carried out to assess the anti-inflammatory efficacy of MEMH on monosodium urate (MSU) crystals-induced gouty inflammation. MSU crystals stimulated human chondrosarcoma cell line, SW1353, and human primary chondrocytes were treated with MEMH in vitro. The expression levels of pro-inflammatory mediators and metalloproteases were analyzed. The effect of MEMH on NFκB signaling pathway in SW1353 cells was examined. Effect of MEMH on the mRNA expression level of pro-inflammatory mediators and chemotactic factor from human monocytic cell line, THP-1, was also analyzed. The probable role of MEMH in the differentiation process of osteoblast like cells, SaOS-2, after MSU treatment was also observed. To investigate the effects of MEMH in vivo, MSU crystals-induced ankle arthritic model was established. Histopathological changes in affected joints and plasma levels of pro-inflammatory mediators (IL-1ß and TNFα) were recorded. MEMH inhibited NFκB signaling pathway and COX-2 protein expression in chondrocytes. MSU-induced mRNA expressions of pro-inflammatory mediators and chemotactic cytokines were suppressed by MEMH. In MSU crystals-induced ankle arthritic mouse model, administration of MEMH relieved inflammatory symptoms and decreased the plasma levels of IL-1ß and TNFα. The results indicated that MEMH can effectively inhibit the expression of inflammatory mediators in gouty arthritis, demonstrating its potential for treating gouty arthritis.


Assuntos
Anti-Inflamatórios/administração & dosagem , Artrite Gotosa/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Ácido Úrico/efeitos adversos , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/genética , Artrite Gotosa/imunologia , Linhagem Celular , Condrócitos/efeitos dos fármacos , Condrócitos/imunologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Plantas Medicinais/química , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
5.
Sci Rep ; 7(1): 1516, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28473719

RESUMO

An advanced organic photodetector (OPD) with a butter layer of Si-rich silicon oxynitride (SiOxNy) was fabricated. The detector structure is as follows: Indium tin oxide (ITO) coated glass substrate/SiOxNy(10 nm)/naphthalene-based donor:C60(1:1)/ITO. Values of x and y in SiOxNy were carefully controlled and the detector performances such as dark current and thermal stability were investigated. When the values of x and y are 0.16 and 0.66, the detector illustrates low dark current as well as excellent thermal stability. In the OPD, silicon oxynitride layer works as electron barrier under reverse bias, leading to the decrease of dark current and increase of detectivity. Since the band gap of silicon oxynitride unlike conventional buffer layers can also be controlled by adjusting x and y values, it can be adapted into various photodiode applications.

6.
Korean J Physiol Pharmacol ; 21(2): 205-213, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28280414

RESUMO

Quercetin, a plant-derived flavonoid found in fruits, vegetables and tea, has been known to possess bioactive properties such as anti-oxidant, anti-inflammatory and anti-cancer. In this study, anti-cancer effect of quercetin and its underlying mechanisms in triple-negative breast cancer cells was investigated. MTT assay showed that quercetin reduced breast cancer cell viability in a time and dose dependent manner. For this, quercetin not only increased cell apoptosis but also inhibited cell cycle progression. Moreover, quercetin increased FasL mRNA expression and p51, p21 and GADD45 signaling activities. We also observed that quercetin induced protein level, transcriptional activity and nuclear translocation of Foxo3a. Knockdown of Foxo3a caused significant reduction in the effect of quercetin on cell apoptosis and cell cycle arrest. In addition, treatment of JNK inhibitor (SP 600125) abolished quercetin-stimulated Foxo3a activity, suggesting JNK as a possible upstream signaling in regulation of Foxo3a activity. Knockdown of Foxo3a and inhibition of JNK activity reduced the signaling activities of p53, p21 and GADD45, triggered by quercetin. Taken together, our study suggests that quercetin induces apoptosis and cell cycle arrest via modification of Foxo3a signaling in triple-negative breast cancer cells.

7.
Sci Rep ; 6: 30554, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27476672

RESUMO

Defect depth profiles of Cu (In1-x,Gax)(Se1-ySy)2 (CIGSS) were measured as functions of pulse width and voltage via deep-level transient spectroscopy (DLTS). Four defects were observed, i.e., electron traps of ~0.2 eV at 140 K (E1 trap) and 0.47 eV at 300 K (E2 trap) and hole traps of ~0.1 eV at 100 K (H1 trap) and ~0.4 eV at 250 K (H2 trap). The open circuit voltage (VOC) deteriorated when the trap densities of E2 were increased. The energy band diagrams of CIGSS were also obtained using Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and DLTS data. These results showed that the valence band was lowered at higher S content. In addition, it was found that the E2 defect influenced the VOC and could be interpreted as an extended defect. Defect depth profile images provided clear insight into the identification of defect state and density as a function of depth around the space charge region.

8.
Phys Chem Chem Phys ; 18(31): 21371-80, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27425259

RESUMO

A new reliable computational model to predict the hole mobility of poly-crystalline organic semiconductors in thin films was developed. Site energy differences and transfer integrals in crystalline morphologies of organic molecules were obtained from quantum chemical calculations, in which periodic boundary conditions were efficiently applied to capture the interactions with the surrounding molecules in the crystalline organic layer. Then the parameters were employed in kinetic Monte Carlo (kMC) simulations to estimate the carrier mobility. Carrier transport in multiple directions has been considered in the kMC simulation to mimic poly-crystalline characteristics under thin-film conditions. Furthermore, the calculated mobility was corrected using a calibration equation based on microscopy images of the thin films to take the effect of grain boundaries into account. As a result, good agreement was observed between the predicted and measured hole mobility values for 21 molecular species: the coefficient of determination (R(2)) was estimated to be 0.83 and the mean absolute error was 1.32 cm(2) V(-1) s(-1). This numerical approach can be applied to any molecules for which crystal structures are available and will provide a rapid and precise way of predicting device performance.

9.
ACS Nano ; 9(1): 633-8, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25485620

RESUMO

Because of the low solubility of N atoms in metals, hexagonal boron nitride (h-BN) growth has explained by surface reaction on metal rather than by penetration/precipitation of B and N atoms in metal. Here, we present an impressive pathway of h-BN formation at the interface between Ni and oxide substrate based on B-N molecular diffusion into Ni through individual atomic vacancies. First-principles calculations confirmed the formation energies of the h-BN layers on and under the metal and the probability of B-N molecular diffusion in metal. The interface growth behavior depends on the species of metal catalysts, and these simulation results well support experimental results.

10.
Biointerphases ; 9(3): 031007, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25280848

RESUMO

The tribological performance of total hip arthroplasty has an important influence on its success rate. This study examined the concentration-dependent role of hyaluronic acid (HA) and phospholipid (dipalmitoylphosphatidylcholine, DPPC) in the boundary lubricating ability of retrieved cobalt-chromium femoral heads. The microscale frictional coefficients (µ) were measured by atomic force microscopy using a rectangular silicon cantilever integrated with sharp silicon tips. In the case of HA lubricant, the frictional coefficients decreased significantly at concentrations of 2.0 (0.16 ± 0.03) and 3.5 mg/ml (0.11 ± 0.01) while increased at 5.0 mg/ml (0.15 ± 0.01), compared to that with phosphate buffer saline (0.25 ± 0.03). The concentration-dependent lubrication behavior of DPPC was most effective when DPPC was in the physiological concentration range, showing µ = 0.16 ± 0.01 in polypropylene glycol, and 0.05 ± 0.01, 0.02 ± 0.01, and 0.03 ± 0.01 at a DPPC concentration of 0.05, 0.2, and 3.0 mg/ml, respectively. Results obtained show significant differences between the DPPC concentration groups. Conclusively, the microscale frictional response of the retrieved CoCr femoral head has a significant dependence on the concentrations of HA and DPPC. Moreover, observed optimal concentration of HA and DPPC for effective lubrication is similar to that observed in normal human synovial fluid. Therefore, a retrieval of the synovia may be considered during total hip replacement surgeries in an effort for reduction of friction between head and liner of total hip replacement implants.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/farmacologia , Artroplastia de Quadril/métodos , Cromo/química , Cobalto/química , Ácido Hialurônico/farmacologia , Lubrificantes/farmacologia , Próteses e Implantes , Fenômenos Químicos , Humanos , Lubrificação , Microscopia de Força Atômica
11.
Nano Lett ; 9(4): 1476-81, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19296606

RESUMO

The fabrication of controlled nanostructures such as quantum dots, nanotubes, nanowires, and nanopillars has progressed rapidly over the past 10 years. However, both bottom-up and top-down methods to integrate the nanostructures are met with several challenges. For practical applications with the high level of the integration, an approach that can fabricate the required structures locally is desirable. In addition, the electrical signal to construct and control the nanostructures can provide significant advantages toward the stability and ordering. Through experiments on the negative resistance switching phenomenon in Pt-NiO-Pt structures, we have fabricated nanofilament channels that can be electrically connected or disconnected. Various analyses indicate that the nanofilaments are made of nickel and are formed at the grain boundaries. The scaling behaviors of the nickel nanofilaments were closely examined, with respect to the switching time, power, and resistance. In particular, the 100 nm x 100 nm cell was switchable on the nanosecond scale, making them ideal for the basis for high-speed, high-density, nonvolatile memory applications.

12.
J Nanosci Nanotechnol ; 7(12): 4285-93, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18283805

RESUMO

Monolayer arrays of monodispersed nanocrystals (<10 nm) onto three dimensional (3D) substrates have considerable potential for various engineering applications such as highly integrated memory devices, solar cells, biosensors and photo and electro luminescent displays because of their highly integrated features with nanocrystal homogeneity. However, most reports on nanocrystal arrays have focused on two dimensional (2D) flat substrates, and the production of wafer-scale monolayer arrays is still challenging. Here we address the feasibility of arraying nanocrystal monolayers in wafer-scale onto 3D substrates. We present both metal (Pd) and semiconductor (CdSe) nanocrystals arrayed in monolayer onto trenched silicon wafers (4 inch diameter) using a facile electrostatic adsorption scheme. In particular, CdSe nanocrystal arrays in the trench well showed superior luminescent efficiency compared to those onto the protruded trench flat, due to the densely arrayed CdSe nanocrystals in the vertical direction. Furthermore, the surface coverage controllability was investigated using a 2D silicon substrate. Our approach can be applied to generate highly efficient displays, memory chips and integrated sensing devices.

14.
J Am Chem Soc ; 128(29): 9326-7, 2006 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-16848456

RESUMO

Hydrolysis of In(O-iPr)3 by 10 molar excess of water at 90 degrees C in a surfactant/solvent mixture of oleylamine/oleic acid/trioctylamine provides very small nanoparticles (<5 nm in diameter) of In(O)(OH). Subsequent in situ thermolysis of the formed In(O)(OH) nanoparticles at 350 degrees C and ambient pressure produces monodisperse h-In2O3 nanocubes, which can form an extended two-dimensional array on a flat surface. The size of the In2O3 nanocubes (8, 10, and 12 nm) could be easily controlled by the simple change in the amounts of employed surfactants. The h-In2O3 nanocube samples show blue PL emissions at room temperature due to, presumably, systematic oxygen vacancy.

15.
Microsc Microanal ; 11(5): 431-45, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17481324

RESUMO

Practical analyses of the structures of ultrathin multilayers in tunneling magneto resistance (TMR) and Magnetic Random Access Memory (MRAM) devices have been a challenging task because layers are very thin, just 1-2 nm thick. Particularly, the thinness (approximately 1 nm) and chemical properties of the AlOx barrier layer are critical to its magnetic tunneling property. We focused on evaluating the current TEM analytical methods by measuring the thickness and composition of an AlOx layer using several TEM instruments, that is, a round robin test, and cross-checked the thickness results with an X-ray reflectometry (XRR) method. The thickness measured by using HRTEM, HAADF-STEM, and zero-loss images was 1.1 nm, which agreed with the results from the XRR method. On the other hand, TEM-EELS measurements showed 1.8 nm for an oxygen 2D-EELS image and 3.0 nm for an oxygen spatially resolved EELS image, whereas the STEM-EDS line profile showed 2.5 nm in thickness. However, after improving the TEM-EELS measurements by acquiring time-resolved images, the measured thickness of the AlOx layer was improved from 1.8 nm to 1.4 nm for the oxygen 2D-EELS image and from 3.0 nm to 2.0 nm for the spatially resolved EELS image, respectively. Also the observed thickness from the EDS line profile was improved to 1.4 nm after more careful optimization of the experimental parameters. We found that EELS and EDS of one-dimensional line scans or two-dimensional elemental mapping gave a larger AlOx thickness even though much care was taken. The reasons for larger measured values can be found from several factors such as sample drift, beam damage, probe size, beam delocalization, and multiple scattering for the EDS images, and chromatic aberration, diffraction limit due to the aperture, delocalization, alignment between layered direction in samples, and energy dispersion direction in the EELS instrument for EELS images. In the case of STEM-EDS mapping with focused nanoprobes, it is always necessary to reduce beam damage and sample drift while trying to maintain the signal-to-noise (S/N) ratio as high as possible. Also we confirmed that the time-resolved TEM-EELS acquisition technique improves S/N ratios of elemental maps without blurring the images.

16.
J Am Chem Soc ; 126(49): 15982-3, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15584730

RESUMO

A chemical route to single-walled carbon nanotubes (SWCNTs) under ambient conditions has been developed. Silica powder was immersed in a mixture solution of ferrocene and p-xylene. After sonication at atmospheric pressure and room temperature, we obtained high-purity SWCNTs. Sonochemical effects may lead to producing high-purity SWCNTs. The process could be readily generalized to synthesize other forms of carbon-based materials, such as fullerenes, multiwalled nanotubes, carbon onions, and diamond, in liquid solution under ambient conditions.


Assuntos
Compostos Ferrosos/química , Nanotubos de Carbono/química , Dióxido de Silício/química , Xilenos/química , Pressão Atmosférica , Metalocenos , Soluções , Sonicação , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...