Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(28): 33721-33731, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37395597

RESUMO

This study proposes the possibility of employing metal iodates as novel gas-sensing materials synthesized using a facile chemical precipitation method. An extensive survey of a library of metal iodates reveals that cobalt, nickel, and copper iodates are useful for gas sensor applications. Material analysis conducted using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, thermal gravity differential temperature analysis, and Raman spectroscopy enables us to understand the thermal behavior and optimize post-annealing conditions. The evaluation of the gas-sensing performance of the specified metal iodates indicates that all of them display p-type sensing behavior and exhibit a high gas response toward different gases: a gas response of 18.6 by cobalt iodate to 1.8 ppm of acetone, a gas response of 4.3 by nickel iodate to 1 ppm of NO2, and a gas response of 6.6 by copper iodate to 1.8 ppm of H2S. Further investigation of the temperature-programmed reduction of H2 and polarization-electric field hysteresis analyses elucidates that the high gas response originates from the inherent characteristics of metal iodates, such as the high oxygen-reduction ability of iodine, highlighting the potential of the iodates as novel gas-sensing materials.

2.
Ind Eng Chem Res ; 61(17): 5885-5897, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35571515

RESUMO

Substitutional doping and different nanostructures of ZnO have rendered it an effective sensor for the detection of volatile organic compounds in real-time atmosphere. However, the low selectivity of ZnO sensors limits their applications. Herein, hafnium (Hf)-doped ZnO (Hf-ZnO) nanostructures are developed by the hydrothermal method for high selectivity of hazardous NOX gas in the atmosphere, substantially portraying the role of doping concentration on the enhancement of structural, optical, and sensing behavior. ZnO microspheres with 5% Hf doping showed excellent sensing and detected 22 parts per billion (ppb) NOX gas in the atmosphere, within 24 s, which is much faster than ZnO (90 s), and rendered superior sensing ability (S = 67) at a low temperature (100 °C) compared to ZnO (S = 40). The sensor revealed exceptional stability under humid air (S = 55 at 70% RH), suggesting a potential of 5% Hf-ZnO as a new stable sensing material. Density functional theory (DFT) and other characterization analyses revealed that the high sensing activity of 5% Hf-ZnO is attributed to the accessibility of more adsorption sites arising due to charge distortion, increased oxygen vacancies concentration, Lewis acid base, porous morphology, small particle size (5 nm), and strong bond interaction amidst NO2 molecule with ZnO-Hf-Ovacancy sites, resulting from the substitution of the host cation (Zn2+) with doping cation (Hf4+).

3.
Chemistry ; 22(21): 7102-7, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27125495

RESUMO

Monolayers of periodic porous Co3 O4 inverse opal (IO) thin films for gas-sensor applications were prepared by transferring cobalt-solution-dipped polystyrene (PS) monolayers onto sensor substrates and subsequent removal of the PS template by heat treatment. Monolayer Co3 O4 IO thin films having periodic pores (d≈500 nm) showed a high response of 112.9 to 5 ppm C2 H5 OH at 200 °C with low cross-responses to other interfering gases. Moreover, the selective detection of xylene and methyl benzenes (xylene+toluene) could be achieved simply by tuning the sensor temperature to 250 and 275 °C, respectively, so that multiple gases can be detected with a single chemiresistor. Unprecedentedly high ethanol response and temperature-modulated control of selectivity with respect to ethanol, xylene, and methyl benzenes were attributed to the highly chemiresistive IO nanoarchitecture and to the tuned catalytic promotion of different gas-sensing reactions, respectively. These well-ordered porous nanostructures could have potential in the field of high-performance gas sensors based on p-type oxide semiconductors.

4.
Small ; 9(19): 3352-60, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23589198

RESUMO

Detection of the anthrax toxin, the protective antigen (PA), at the attomolar (aM) level is demonstrated by an electrical aptamer sensor based on a chemically derived graphene field-effect transistor (FET) platform. Higher affinity of the aptamer probes to PA in the aptamer-immobilized FET enables significant improvements in the limit of detection (LOD), dynamic range, and sensitivity compared to the antibody-immobilized FET. Transduction signal enhancement in the aptamer FET due to an increase in captured PA molecules results in a larger 30 mV/decade shift in the charge neutrality point (Vg,min ) as a sensitivity parameter, with the dynamic range of the PA concentration between 12 aM (LOD) and 120 fM. An additional signal enhancement is obtained by the secondary aptamer-conjugated gold nanoparticles (AuNPs-aptamer), which have a sandwich structure of aptamer/PA/aptamer-AuNPs, induce an increase in charge-doping in the graphene channel, resulting in a reduction of the LOD to 1.2 aM with a three-fold increase in the Vg,min shift.

5.
Biosens Bioelectron ; 41: 621-6, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23107386

RESUMO

We report reduced graphene oxide field effect transistor (R-GO FET) biosensor for label-free ultrasensitive detection of a prostate cancer biomarker, prostate specific antigen/α1-antichymotrypsin (PSA-ACT) complex. The R-GO channel in the device was formed by reduction of graphene oxide nanosheets networked by a self-assembly process. Immunoreaction of PSA-ACT complexes with PSA monoclonal antibodies on the R-GO channel surface caused a linear response in the shift of the gate voltage, V(g,min), where the minimum conductivity occurs. The R-GO FET can detect protein-protein interactions down to femtomolar level with a dynamic range over 6-orders of magnitude in the V(g,min) shift as a sensitivity parameter. High association constants of 3.2 nM(-1) and 4.2 nM(-1) were obtained for the pH 6.2 and pH 7.4 analyte solutions, respectively. The R-GO FET biosensor showed a high specificity to other cancer biomarker in the phosphate buffered saline solutions as well as in the human serum.


Assuntos
Biomarcadores Tumorais/sangue , Condutometria/instrumentação , Grafite/química , Proteínas de Neoplasias/sangue , Neoplasias Experimentais/sangue , Mapeamento de Interação de Proteínas/instrumentação , Transistores Eletrônicos , Técnicas Biossensoriais/instrumentação , Linhagem Celular Tumoral , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Neoplasias Experimentais/diagnóstico , Óxidos/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Coloração e Rotulagem
6.
Enzyme Microb Technol ; 50(4-5): 209-14, 2012 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-22418259

RESUMO

Fuculose-1-phosphate aldolase (FucA) is a useful biocatalyst with potential applications in chiral synthesis. In this study, the overall kinetic mechanism of FucA from the archaeon Methanococcus jannaschii was studied. The K(m) values of dihydroxyacetone phosphate (DHAP) and dl-glyceraldehyde were 0.09 and 0.74 mM, respectively. Dead-end inhibition by trimethyl phosphonoacetate and dl-threose were competitive and uncompetitive with respect to DHAP and dl-glyceraldehyde. Inhibition patterns obtained using reaction products were noncompetitive vs. DHAP and competitive vs. dl-glyceraldehyde. The equilibrium constant was 8.309×10(-3) M as assessed by varying the [DHAP]/[product] ratio at a fixed dl-glyceraldehyde concentration and by measuring the change in DHAP concentration after equilibrium was reached. This constant is consistent with the K(eq) value obtained from (13)C NMR (15.625×10(-3) M). The resultant inhibition kinetics may suggest the insights of kinetic mechanism of the FucA catalyzed reaction.


Assuntos
Frutose-Bifosfato Aldolase/metabolismo , Hexosefosfatos/metabolismo , Mathanococcus/enzimologia , Proteínas Arqueais/metabolismo , Fosfato de Di-Hidroxiacetona/química , Fosfato de Di-Hidroxiacetona/metabolismo , Gliceraldeído/química , Gliceraldeído/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Especificidade por Substrato
7.
Biosci Biotechnol Biochem ; 74(11): 2281-6, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21071847

RESUMO

The first step in branched-chain amino acid biosynthesis is catalyzed by acetohydroxyacid synthase (EC 2.2.1.6). This reaction involves decarboxylation of pyruvate followed by condensation with either an additional pyruvate molecule or with 2-oxobutyrate. The enzyme requires three cofactors, thiamine diphosphate (ThDP), a divalent ion, and flavin adenine dinucleotide (FAD). Escherichia coli contains three active isoenzymes, and acetohydroxyacid synthase I (AHAS I) large subunit is encoded by the ilvB gene. In this study, the ilvB gene from E. coli K-12 was cloned into expression vector pETDuet-1, and was expressed in E. coli BL21 (DH3). The purified protein was identified on a 12% SDS-PAGE gel as a single band with a mass of 65 kDa. The optimum temperature, buffer, and pH for E. coli K-12 AHAS I were 37 °C, potassium phosphate buffer, and 7.5. Km values for E. coli K-12 AHAS I binding to pyruvate, Mg(+2), ThDP, and FAD were 4.15, 1.26, 0.2 mM, and 0.61 µM respectively. Inhibition of purified AHAS I protein was determined with herbicides and new compounds.


Assuntos
Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/metabolismo , Escherichia coli K12/enzimologia , Acetolactato Sintase/genética , Aminoácidos de Cadeia Ramificada/biossíntese , Clonagem Molecular , Proteínas de Escherichia coli/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Herbicidas/farmacologia , Cinética , Ligação Proteica , Tiamina Pirofosfato/metabolismo
8.
Biosens Bioelectron ; 25(11): 2477-82, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20435461

RESUMO

We demonstrated a highly sensitive organic electrochemical transistor (OECT) based immunosensor with a low detection limit for prostate specific antigen/alpha1-antichymotrypsin (PSA-ACT) complex. The poly(styrenesulfonate) doped poly(3,4-ethylenedioxythiophene) (PEDOT:PSS) based OECT with secondary antibody conjugated gold nanoparticles (AuNPs) provided a detection limit of the PSA-ACT complex as low as 1pg/ml, as well as improved sensitivity and a dynamic range, due to the role of AuNPs in the signal amplification. The sensor performances were particularly improved in the lower concentration range where the detection is clinically important for the preoperative diagnosis and screening of prostate cancer. This result shows that the OECT-based immunosensor can be used as a transducer platform acceptable to the point-of-care (POC) diagnostic systems and demonstrates adaptability of organic electronics to clinical applications.


Assuntos
Técnicas Biossensoriais/instrumentação , Condutometria/instrumentação , Ouro/química , Imunoensaio/instrumentação , Nanopartículas/química , Antígeno Prostático Específico/análise , Transistores Eletrônicos , Amplificadores Eletrônicos , Desenho de Equipamento , Análise de Falha de Equipamento , Nanopartículas/ultraestrutura , Compostos Orgânicos/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Nano Lett ; 10(4): 1229-33, 2010 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-20230043

RESUMO

On-chip optical interconnection is considered as a substitute for conventional electrical interconnects as microelectronic circuitry continues to shrink in size. Central to this effort is the development of ultracompact, silicon-compatible, and functional optoelectronic devices. Photodetectors play a key role as interfaces between photonics and electronics but are plagued by a fundamental efficiency-speed trade-off. Moreover, engineering of desired wavelength and polarization sensitivities typically requires construction of space-consuming components. Here, we demonstrate how to overcome these limitations in a nanoscale metal-semiconductor-metal germanium photodetector for the optical communications band. The detector capitalizes on antenna effects to dramatically enhance the photoresponse (>25-fold) and to enable wavelength and polarization selectivity. The electrical design featuring asymmetric metallic contacts also enables ultralow dark currents (approximately 20 pA), low power consumption, and high-speed operation (>100 GHz). The presented high-performance photodetection scheme represents a significant step toward realizing integrated on-chip communication and manifests a new paradigm for developing miniaturized optoelectronics components.


Assuntos
Germânio/química , Nanoestruturas/química , Nanotecnologia/instrumentação , Fotometria/instrumentação , Semicondutores
10.
Nat Mater ; 8(8): 643-7, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19578337

RESUMO

The use of quantum and photon confinement has enabled a true revolution in the development of high-performance semiconductor materials and devices. Harnessing these powerful physical effects relies on an ability to design and fashion structures at length scales comparable to the wavelength of electrons (approximately 1 nm) or photons (approximately 1 microm). Unfortunately, many practical optoelectronic devices exhibit intermediate sizes where resonant enhancement effects seem to be insignificant. Here, we show that leaky-mode resonances, which can gently confine light within subwavelength, high-refractive-index semiconductor nanostructures, are ideally suited to enhance and spectrally engineer light absorption in this important size regime. This is illustrated with a series of individual germanium nanowire photodetectors. This notion, together with the ever-increasing control over nanostructure synthesis opens up tremendous opportunities for the realization of a wide range of high-performance, nanowire-based optoelectronic devices, including solar cells, photodetectors, optical modulators and light sources.

11.
Talanta ; 77(4): 1432-6, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19084661

RESUMO

We examined the use of a bismuth-glassy carbon (Bi/C) composite electrode for the determination of trace amounts of lead and cadmium. Incorporated bismuth powder in the composite electrode was electrochemically dissolved in 0.1M acetate buffer (pH 4.5) where nanosized bismuth particles were deposited on the glassy carbon at the reduction potential. The anodic stripping voltammetry on the Bi/C composite electrode exhibited well-defined, sharp and undistorted peaks with a favorable resolution for lead and cadmium. Comparing a non-oxidized Bi/C composite electrode with an in-situ plated bismuth film electrode, the Bi/C composite electrode exhibited superior performance due to its much larger surface area. The limit of detection was 0.41 microg/L for lead and 0.49 microg/L for cadmium. Based on this study, we are able to conclude that various types of composite electrodes for electroanalytical applications can be developed with a prudent combination of electrode materials.


Assuntos
Bismuto/análise , Cádmio/análise , Eletrodos , Chumbo/análise , Oligoelementos/análise , Adsorção , Calibragem , Carbono/química , Eletroquímica/métodos , Concentração de Íons de Hidrogênio , Microeletrodos , Oxigênio/química , Potenciometria , Propriedades de Superfície
12.
Talanta ; 76(2): 301-8, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18585281

RESUMO

A bismuth-modified carbon nanotube electrode (Bi-CNT electrode) was employed for the determination of trace lead, cadmium and zinc. Bismuth film was prepared by in situ plating of bismuth onto the screen-printed CNT electrode. Operational parameters such as preconcentration potential, bismuth concentration, preconcentration time and rotation speed during preconcentration were optimized for the purpose of determining trace metals in 0.1M acetate buffer solution (pH 4.5). The simultaneous determination of lead, cadmium and zinc was performed by square wave anodic stripping voltammetry. The Bi-CNT electrode presented well-defined, reproducible and sharp stripping signals. The peak current response increased linearly with the metal concentration in a range of 2-100 microg/L. The limit of detection was 1.3 microg/L for lead, 0.7 microg/L for cadmium and 12 microg/L for zinc (S/N=3). The Bi-CNT electrode was successfully applicable to analysis of trace metals in real environments.


Assuntos
Eletrodos/normas , Nanotubos de Carbono , Oligoelementos/análise , Bismuto , Cádmio/análise , Chumbo/análise , Zinco/análise
13.
Arch Biochem Biophys ; 472(1): 58-64, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18269913

RESUMO

Anthrax lethal factor (LeTx) is a critical virulence factor in toxin-challenged cells, as lethal factor (LF) cleaves mitogen-activated protein kinase kinases (MKKs), inhibiting their activity. The physiological importance of this cleavage for macrophage cytolysis remains unclear, because similar proteolysis has been also observed in LeTx-resistant macrophages. Here, we analyzed in vitro proteomic profiles of Raw264.7 lysates treated with LF. In our experiments, neuronal NO synthase (nNOS) was found to be a fragment, suggesting that LF may act on nNOS cleavage. A similar cleavage of nNOS was shown in LeTx-challenged HEK293 cells expressing nNOS by a transient transfection. However, the cleavage site on nNOS is a unique leader sequence among the NOS family and this LF-mediated cleavage was not observed in iNOS, a major NOS isoform for anti-bactericidal NO production, even though NO level in LeTx-challenged cells was dramatically reduced. Our findings suggest that LF is directly capable of cleaving cellular protein(s) other than MKKs, and that these actions potentiate to promote the cytotoxic mechanisms of anthrax.


Assuntos
Antígenos de Bactérias/administração & dosagem , Toxinas Bacterianas/administração & dosagem , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico Sintase/metabolismo , Proteoma/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Camundongos
14.
J Nanosci Nanotechnol ; 7(11): 4185-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18047147

RESUMO

We have fabricated for the first time one-dimensional multiwalled carbon nanotube (MWNT) nanocomposite fibers with improved electrical properties using electrospinning. Polyaniline (PANi) and poly(ethylene oxide) (PEO) were used as a conducting and a nonconducting matrix, respectively, for hybrid nanofibers including MWNTs. The hybrid nanofibers fabricated by electrospinning had a length of several centimeters and a diameter ranging from approximately 100 nm to approximately 1 microm. Transmission electron microscopic analysis confirmed that the MWNTs were successfully oriented along the fiber axis without any severe aggregation during electrospinning. The hybrid nanofibers showed an enhanced electrical conductance with increasing MWNT content up to 0.5 wt%, and compared to PANi/PEO fibers, they also showed a stable linear ohmic behavior. These hybrid conducting nanofibers can be applied to chemical and biosensors that require a high sensitivity.


Assuntos
Compostos de Anilina/química , Cristalização/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...