Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 113(5): 1245-8, 2009 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19133761

RESUMO

Natural methane hydrates occurring in marine clay sediments exhibit heterogeneous phase behavior with high complexity, particularly in the negatively charged interlayer region. To date, the real clay interlayer effect on natural methane hydrate formation and stability remains still much unanswered, even though a few computer simulation and model studies are reported. We first examined the chemical shift difference of 27Al, 29Si, and 23Na between dry clay and clay containing intercalated methane hydrates (MH) in the interlayer. We also measured the solid-state 13C MAS NMR spectra of MH in Na-montmorillonite (MMT) and Ca-montmorillonite (MMT) to reveal abnormal methane popularity established in the course of intercalation and further performed cryo-TEM and XRD analyses to identify the morphology and layered structure of the intercalated methane hydrate. The present findings strongly suggest that the real methane amount contained in natural MH deposits should be reevaluated under consideration of the compositional, structural, and physical characteristics of clay-rich sediments. Furthermore, the intercalated methane hydrate structure should be seriously considered for developing the in situ production technologies of the deep-ocean methane hydrate.

2.
Proc Natl Acad Sci U S A ; 103(34): 12690-4, 2006 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-16908854

RESUMO

Large amounts of CH4 in the form of solid hydrates are stored on continental margins and in permafrost regions. If these CH4 hydrates could be converted into CO2 hydrates, they would serve double duty as CH4 sources and CO2 storage sites. We explore here the swapping phenomenon occurring in structure I (sI) and structure II (sII) CH4 hydrate deposits through spectroscopic analyses and its potential application to CO2 sequestration at the preliminary phase. The present 85% CH4 recovery rate in sI CH4 hydrate achieved by the direct use of binary N2+CO2 guests is surprising when compared with the rate of 64% for a pure CO2 guest attained in the previous approach. The direct use of a mixture of N2+CO2 eliminates the requirement of a CO2 separation/purification process. In addition, the simultaneously occurring dual mechanism of CO2 sequestration and CH4 recovery is expected to provide the physicochemical background required for developing a promising large-scale approach with economic feasibility. In the case of sII CH4 hydrates, we observe a spontaneous structure transition of sII to sI during the replacement and a cage-specific distribution of guest molecules. A significant change of the lattice dimension caused by structure transformation induces a relative number of small cage sites to reduce, resulting in the considerable increase of CH4 recovery rate. The mutually interactive pattern of targeted guest-cage conjugates possesses important implications for the diverse hydrate-based inclusion phenomena as illustrated in the swapping process between CO2 stream and complex CH4 hydrate structure.


Assuntos
Dióxido de Carbono/química , Água/química , Cinética , Modelos Moleculares , Conformação Molecular , Nitrogênio/química , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA