Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1287997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089806

RESUMO

Introduction: Paprika (Capsicum annuum L.) is prone to chilling injury (CI) during low-temperature storage. Although recent findings suggest that CO2 treatment may protect against CI, the effects of short-term CO2 treatment on CI and the underlying molecular mechanisms in paprika remain unknown. Therefore, this study aimed to examine the effect of short-term CO2 treatment on CI and postharvest quality in paprika during storage at cold storage and retail condition at physio-biochemical-molecular level. Methods: Paprika was treated with 20 and 30% CO2 for 3 h and stored at 4°C for 14 days, followed by additional storage for 2 days at 20°C (retail condition). Fruit quality parameters, including weight loss, firmness, color, and pitting were assessed, and the molecular mechanism of the treatment was elucidated using transcriptomic and metabolomic analyses. Results: Short-term treatment with 20 and 30% CO2 effectively maintained paprika quality during cold storage and retailer conditions, with reduced surface pitting, a common symptom of CI. Additionally, transcriptomic and metabolomic analyses revealed that 20% CO2 treatment induced genes associated with biosynthesis of phosphatidic acid (PA), diacylglycerol, triacylglycerol, and stress response, metabolites associated with phasphatidyl inositol signaling, inositol phosphate metabolism, and starch and sucrose metabolism. Conclusion: CO2 treatment activates PA biosynthesis through PLD and PLC-DGK pathways, and induces inositol phosphate, starch, and sucrose metabolism, thereby regulating chilling stress response via the ICE-CBF pathway. These findings suggest that short-term CO2 treatment enhances resistance to cold-induced injury and preserves postharvest quality in non-climacteric fruits, such as paprika, through activation of PA signaling, which improves membrane stability during cold storage and distribution.

2.
Foods ; 12(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38002146

RESUMO

Greasiness in apple skin reduces its quality, and its level varies depending on the variety. In this study, low-temperature (1 ± 0.5 °C) stored 'Hongro' and 'Fuji', which had differences in the occurrence of greasiness, were moved to room temperature (20 °C) and untargeted metabolite and fatty acids for skin and flesh along with quality changes due to greasiness occurrence were compared. Ethylene production differed noticeably between the two varieties and increased rapidly in 'Hongro' until 9 d of room-temperature storage. The ethylene production did not differ significantly between the two varieties on day 20 when greasiness occurred. According to the PLS-DA score plot, while 'Hongro' had similar amounts of unsaturated and saturated fatty acids, 'Fuji' had approximately twice as much unsaturated-fatty-acid content. 'Hongro', after 50 d of low-temperature (1 ± 0.5 °C) storage, produced excessive ethylene during room-temperature storage, which was directly related to greasiness development. As a result, the primary wax components of greasy 'Hongro' were nonacosane and nonacosan-10-ol. As the room-temperature storage period elapsed, pentyl linoleate and α-farnesene contents increased significantly. Furthermore, these greasiness-triggering characteristics of 'Hongro' may have been genetically influenced by the paternal parent used during breeding.

3.
Front Plant Sci ; 14: 1197776, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448864

RESUMO

Introduction: Ethylene response factors (ERFs) play a critical role in regulating hormone interactions that affect the shelf life of tomatoes. Understanding their regulation during storage and distribution can be highly beneficial. Methods: This study examined the effects of treatment with ethylene (ET), brassinosteroid (BR), auxin (AUX), and gibberellin (GA) on fruit ripening and the expression of 18 ripening-associated ERFs in tomato stored at 20°C (room temperature) for 10 d or 4°C (cold storage) for 14 d followed by 2 d at 20°C (retailer conditions). Results: The results showed that ripening was accelerated by ET and BR but was delayed by AUX and GA at room temperature. Cold storage delayed ripening in all groups, with ET and GA treatments showing the highest and lowest a* values, respectively. The effects of hormone treatment were consistent with room temperature when the fruits were transferred from cold storage to retail conditions. At room temperature, ERFs responsive to ET (ERF.B1, B2, B6, E2, and F1) and BR (ERF.E5, F2, and F3) were inhibited by AUX. ET-induced genes (ERF.C1, E1, F4, and H7) could be co-regulated by other hormones at cold storage. When the fruits were transferred from cold storage to retailer conditions, ERFs responsive to ET and BR were inhibited by GA. Additionally, ET-responsive ERFs could be inhibited by BR at room temperature, whereas ET could inhibit BR-responsive ERFs at retailer conditions. The same ERFs that were regulated by ET at room temperature were instead regulated by BR under retailer conditions, and vice versa. Discussion: These findings can help provide a better understanding of the complex hormone interactions regulating the postharvest physiology of tomato and in maintaining its quality and shelf life during storage and distribution.

4.
Front Plant Sci ; 13: 1045761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452096

RESUMO

Fruit ripening involves the dynamic interaction of phytohormones. Ethylene (ET) and gibberellin (GA) antagonistically affect fruit ripening. However, the mechanism of GA and its potential interaction with ET during fruit ripening remain unknown. To identify the potential molecular mechanism of ET and GA interplay in tomato (Solanum lycopersicum L.) fruit ripening, transcriptome and metabolomic profiling was carried out in tomato fruit treated with GA, ET or the combination of the two hormones (GA+ET). ET accelerated fruit ripening with the simultaneous repression of auxin signaling. In contrast, gibberellin delayed ripening by the upregulation of auxin signaling. ET signaling and response was inhibited by GA or combined with ET. At the metabolite level, while GA treatment inhibited metabolite shift during ripening, ET treatment promoted. In the combined hormone treatment, ET reduced or recovered GA inhibitory effect on specific metabolites. This study provided insight into ET and GA interaction, highlighting the importance of auxin signaling in metabolic shifts during tomato ripening progression.

5.
Foods ; 10(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915990

RESUMO

The effects of CO2 pretreatment before cold storage on tomato quality were investigated using physicochemical and transcriptome changes. Harvested tomatoes were treated with 30% or 60% CO2 for 3 h before storage at 4 °C for 14 d (cold storage), followed by transfer to 20 °C for 8 d (ambient conditions). The CO2-treated fruits were firmer with a better appearance than untreated fruits, even after being transferred from 4 °C storage to 20 °C for 8 d. CO2 pretreatment coupled with cold storage synergistically delayed tomato ripening by reducing respiration and lowering lycopene production. The tomatoes treated with 30% and 60% CO2 had fewer pits than untreated fruits after cold storage, even after being transferred to ambient conditions. Moreover, the 60% CO2 treatment significantly suppressed the decay rate. Transcriptome and metabolome functional enrichment analyses commonly showed the involvement of CO2-responsive genes or metabolites in sucrose and starch metabolism, as well as biosynthesis of secondary metabolites-in particular, glycolysis reduction. The most frequently detected domain was the ethylene-responsive factor. These results indicate that altered ethylene biosynthesis and ethylene signaling, via ethylene-responsive transcription factors and respiration-related pathways, appear to control CO2-induced fruit quality.

6.
Front Plant Sci ; 12: 775629, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087550

RESUMO

Maintaining microbial safety and quality of fresh fruits and vegetables are a global concern. Harmful microbes can contaminate fresh produce at any stage from farm to fork. Microbial contamination can affect the quality and shelf-life of fresh produce, and the consumption of contaminated food can cause foodborne illnesses. Additionally, there has been an increased emphasis on the freshness and appearance of fresh produce by modern consumers. Hence, disinfection methods that not only reduce microbial load but also preserve the quality of fresh produce are required. Chlorine dioxide (ClO2) has emerged as a better alternative to chlorine-based disinfectants. In this review, we discuss the efficacy of gaseous and aqueous ClO2 in inhibiting microbial growth immediately after treatment (short-term effect) versus regulating microbial growth during storage of fresh produce (long-term effect). We further elaborate upon the effects of ClO2 application on retaining or enhancing the quality of fresh produce and discuss the current understanding of the mode of action of ClO2 against microbes affecting fresh produce.

7.
Foods ; 9(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967309

RESUMO

Oriental melons have a relatively short shelf life as they are harvested during the summer season and susceptible to cold-induced injuries. Typical chilling injury when stored at 4 °C is expressed as browning of the fruit suture. To prolong the shelf life and reduce browning of the fruit, the effects of modified atmosphere packaging (MAP), X-tend modified atmosphere (MA)/modified humidity (MH) bulk packaging (XF), and polyethylene (PE) packaging, on oriental melons were investigated during storage at 4 °C and 10 °C for 14 days and under retail display conditions at 20 °C. The O2 concentrations in PE packages stored at 4 °C and 10 °C ranged from 17.4 to 18.5%, whereas those in XF packages were reduced to 16.3-16.6%. The CO2 content of XF package (4.2-4.6%) was higher than that of PE package (1.4-1.9%) stored at 4 °C or 10 °C. Relative humidity (RH) saturated in the PE packages but not in the XF packages after seven days of storage. Furthermore, PE packages performed better at maintaining melon weight and firmness than XF packages during storage at 10 °C for 14 days and under retail display conditions at 20 °C. PE and XF packages effectively reduced the browning index of the peel and white linear sutures of oriental melons compared with the unpackaged control during cold storage at 4 °C, and this observation was maintained at the retail display condition at 20 °C. The enhanced CO2 levels, reduced O2 levels, and optimal RH values that were provided by the MAP, prevented the browning symptoms, and improved the marketability and shelf life of oriental melons.

8.
Biochem Biophys Res Commun ; 503(4): 3149-3154, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30149913

RESUMO

The stromal processing peptidase (SPP) removes transit peptides as precursor proteins enter the chloroplast and different plastid types. SPP is synthesized as a latent, inactive precursor (preSPP) with an atypically long transit peptide. Determinants in the pea (Pisum sativum) SPP transit peptide that regulate mature SPP activation were investigated. Mutational and chemical analyses with protein modifying agents (NEM and APMA) showed a conserved transit peptide Cys-X-Ser/Thr-Cys motif did not inhibit SPP via a "cysteine switch" mechanism through His-X-X-Glu-His site interactions, although cysteines in mature SPP contribute to an active conformation. Significantly, a transit peptide deletion of only the N-terminal 28 amino acids activates SPP located downstream. Short deletions within this region suggest removal of the initial Met plays a pivotal, mechanistic role. Other deletions of ∼30 amino acids along the length of the transit peptide do not individually trigger activity, but larger deletions including Met have an additive effect indicating its removal may be a critical early step during preSPP import. Interestingly, the active preSPP deletion mutants no longer possess predicted Hsp70 binding sites including initial Met, thus Hsp70 interactions may restrict SPP from attaining an active conformation.


Assuntos
Cloroplastos/metabolismo , Metaloendopeptidases/metabolismo , Pisum sativum/enzimologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Cloroplastos/química , Ativação Enzimática , Proteínas de Choque Térmico HSP70/metabolismo , Metaloendopeptidases/química , Pisum sativum/química , Pisum sativum/metabolismo , Proteínas de Plantas/química , Ligação Proteica , Conformação Proteica , Domínios Proteicos
9.
Saudi J Biol Sci ; 25(1): 57-65, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29379358

RESUMO

Black tomatoes have a unique color and higher lycopene content than typical red tomatoes. Here, black tomatoes were investigated how maturation stage and storage temperature affected carotenoid and chlorophyll accumulation. Immature fruits were firmer than mature fruits, but failed to develop their distinctive color and contained less lycopene when stored at 8 °C. Hunter a* values of black tomatoes increased with storage temperature and duration; storage of immature fruits at high temperature favored lycopene accumulation. Chlorophyll levels of black tomatoes declined during storage, but differences between mature and immature tomatoes stored at 12 °C were minimal. ß-Carotene levels of black tomatoes increased during early storage, but rapidly declined beginning 13 d post-harvest. The highest lycopene and chlorophyll levels were observed in mature black tomatoes stored at 12 °C for 13 d; these conditions also yielded the best quality fruit. Thus, the unique pigmentation properties of black tomatoes can be precisely controlled by standardizing storage conditions.

10.
J Plant Physiol ; 219: 112-122, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29096083

RESUMO

Cold storage is an effective postharvest control strategy to maintain the freshness of vegetables by suppressing respiration. However, subtropical plants including pepper (Capsicum annuum L.) undergo chilling injury. To better understand the molecular mechanisms involved in preventing chilling injury, transcriptome profiling analysis of peppers stored in a cold chamber and treated with 50µM methyl jasmonate (MeJA) and 1µLL-1 1-methylcyclopropene as an ethylene reaction inhibitor was performed. A total of 240, 470, and 290 genes were upregulated and 184, 291, and 219 genes down-regulated in cold-, MeJA- and 1-methylcyclopropene-treated peppers, respectively. MeJA-treated peppers had significant transcriptome changes compared to cold- and 1-MCP-treated peppers after 24h of storage. MeJA treatment upregulated the genes for peroxidase and catalase related to stress responses, as well as the ethylene-responsive factor (ERF) family and MAP kinase involved in ethylene signaling factors in peppers. Functional analysis revealed that in comparison with wild type plants, ERF1-expressing plants showed a higher antioxidant capacity and enhanced expression levels of oxidative stress-related and jasmonic acid synthesis-related genes during chilling storage conditions. Additionally, ERFs and JA biosynthesis gene expression in peppers during long-term cold storage was upregulated by MeJA. Thus, MeJA enables peppers to respond to cold stress and ethylene signaling, and this could help to prevent chilling injury. Our results suggest that ethylene signaling and JA synthesis share the reactive oxygen species (ROS) scavenger-mediated stress adaption system during chilling stress in pepper. In addition, these findings provide a global insight into the genetic basis for preventing chilling injury in subtropical crops.


Assuntos
Capsicum/fisiologia , Temperatura Baixa , Redes Reguladoras de Genes , Reguladores de Crescimento de Plantas , Transcriptoma , Acetatos/metabolismo , Capsicum/genética , Ciclopentanos/metabolismo , Ciclopropanos/metabolismo , Oxilipinas/metabolismo , Estresse Fisiológico/genética
11.
Biochem Biophys Res Commun ; 480(2): 241-247, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27751855

RESUMO

The high metabolic rate of harvested asparagus spears (Asparagus officinalis L.) causes rapid deterioration. To extend shelf life, we investigated the effect of sucrose treatment on asparagus during storage. Asparagus spears were treated with 3%, 5%, and 10% sucrose and stored at 2 °C for 20 h. Cellular respiration decreased, but other processes were unaltered by exogenous sucrose. The overall appearance of asparagus treated with 3% sucrose and stored at 2 °C for 18 days was rated as good and excellent, unlike that of untreated spears. Asparagus treated with sucrose maintained firmness for 15 days, while untreated spears lost firmness and showed increased water-soluble pectin content during storage. Carbohydrate levels were also higher in sucrose-treated than in control samples. Transcript levels of cell-wall-related genes, including xyloglucan endotransglycosylase (XET)1, XET2, and peroxidase (prx)1, prx2, and prx3 were upregulated by sucrose. Cyanidin 3-O-rutinoside and rutin levels immediately increased upon addition of sucrose and remained high relative to the control during storage. Thus, sucrose modulates asparagus cell wall components and maintains the functionality of important compounds during storage, thus effectively prolonging shelf life.


Assuntos
Asparagus/efeitos dos fármacos , Asparagus/fisiologia , Sacarose/farmacologia , Antocianinas/metabolismo , Asparagus/química , Carboidratos/análise , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Etilenos/metabolismo , Qualidade dos Alimentos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glicosiltransferases/genética , Pectinas/análise , Pectinas/metabolismo , Peroxidase/genética , Proteínas de Plantas/genética , Rutina/metabolismo
12.
Plant Physiol ; 131(3): 1450-9, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12644694

RESUMO

Fluorescence differential display was used to isolate the gibberellin (GA)-responsive gene, CsAGP1, from cucumber (Cucumis sativus) hypocotyls. A sequence analysis of CsAGP1 indicated that the gene putatively encodes a "classical" arabinogalactan protein (AGP) in cucumber. Transgenic tobacco (Nicotiana tabacum) plants overexpressing CsAGP1 under the control of the cauliflower mosaic virus 35S promoter produced a Y(betaGlc)(3)-reactive proteoglycan in addition to AGPs present in wild-type tobacco plants. Immuno-dot blotting of the product, using anti-AGP antibodies, showed that the CsAGP1 protein had the AGP epitopes common to AGP families. The transcription level of CsAGP1 in cucumber hypocotyls increased in response not only to GA but also to indole-3-acetic acid. Although CsAGP1 is expressed in most vegetative tissues of cucumber, including the shoot apices and roots, the GA treatment resulted in an increase in the mRNA level of CsAGP1 only in the upper part of the hypocotyls. Y(betaGlc)(3), which selectively binds AGPs, inhibited the hormone-promoted elongation of cucumber seedling hypocotyls. Transgenic plants ectopically expressing CsAGP1 showed a taller stature and earlier flowering than the wild-type plants. These observations suggest that CsAGP1 is involved in stem elongation.


Assuntos
Cucumis sativus/genética , Giberelinas/farmacologia , Hipocótilo/genética , Mucoproteínas/genética , Reguladores de Crescimento de Plantas/farmacologia , Caules de Planta/crescimento & desenvolvimento , Sequência de Aminoácidos , Anticorpos , Cucumis sativus/crescimento & desenvolvimento , Cucumis sativus/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Ácidos Indolacéticos/farmacologia , Dados de Sequência Molecular , Mucoproteínas/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Proteoglicanas/biossíntese , Nicotiana/genética , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA