Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3070, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244897

RESUMO

Multi-terminal memristor and memtransistor (MT-MEMs) has successfully performed complex functions of heterosynaptic plasticity in synapse. However, theses MT-MEMs lack the ability to emulate membrane potential of neuron in multiple neuronal connections. Here, we demonstrate multi-neuron connection using a multi-terminal floating-gate memristor (MT-FGMEM). The variable Fermi level (EF) in graphene allows charging and discharging of MT-FGMEM using horizontally distant multiple electrodes. Our MT-FGMEM demonstrates high on/off ratio over 105 at 1000 s retention about ~10,000 times higher than other MT-MEMs. The linear behavior between current (ID) and floating gate potential (VFG) in triode region of MT-FGMEM allows for accurate spike integration at the neuron membrane. The MT-FGMEM fully mimics the temporal and spatial summation of multi-neuron connections based on leaky-integrate-and-fire (LIF) functionality. Our artificial neuron (150 pJ) significantly reduces the energy consumption by 100,000 times compared to conventional neurons based on silicon integrated circuits (11.7 µJ). By integrating neurons and synapses using MT-FGMEMs, a spiking neurosynaptic training and classification of directional lines functioned in visual area one (V1) is successfully emulated based on neuron's LIF and synapse's spike-timing-dependent plasticity (STDP) functions. Simulation of unsupervised learning based on our artificial neuron and synapse achieves a learning accuracy of 83.08% on the unlabeled MNIST handwritten dataset.

2.
ACS Nano ; 16(8): 12073-12082, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35913119

RESUMO

In this study, selective Nb doping (P-type) at the WS2 layer in a WS2-MoS2 lateral heterostructure via a chemical vapor deposition (CVD) method using a solution-phase precursor containing W, Mo, and Nb atoms is proposed. The different chemical activity reactivity (MoO3 > WO3 > Nb2O5) enable the separation of the growth temperature of intrinsic MoS2 to 700 °C (first grown inner layer) and Nb-doped WS2 to 800 °C (second grown outer layer). By controlling the Nb/(W+Nb) molar ratio in the solution precursor, the hole carrier density in the p-type WS2 layer is selectively controlled from approximately 1.87 × 107/cm2 at 1.5 at.% Nb to approximately 1.16 × 1013/cm2 at 8.1 at.% Nb, while the electron carrier density in n-type MoS2 shows negligible change with variation of the Nb molar ratio. As a result, the electrical behavior of the WS2-MoS2 heterostructure transforms from the N-N junction (0 at.% Nb) to the P-N junction (4.5 at.% Nb) and the P-N tunnel junction (8.1 at.% Nb). The band-to-band tunneling at the P-N tunnel junction (8.1 at.% Nb) is eliminated by applying negative gate bias, resulting in a maximum rectification ratio (105) and a minimum channel resistance (108 Ω). With this optimized photodiode (8.1 at.% Nb at Vg = -30 V), an Iphoto/Idark ratio of 6000 and a detectivity of 1.1 × 1014 Jones are achieved, which are approximately 20 and 3 times higher, respectively, than the previously reported highest values for CVD-grown transition-metal dichalcogenide P-N junctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...