Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Appl Opt ; 63(8): C8-C14, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38568622

RESUMO

We experimentally apply incoherent Fourier ptychography to enhance the resolution of recorded images by projecting known, uncorrelated, random patterns at high speed onto 3D moving and distant objects. We find that the resolution enhancement factor can be greater than 2, depending on the projection and camera optics.

2.
J Environ Manage ; 357: 120762, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574708

RESUMO

Urban pluvial flooding is becoming a global concern, exacerbated by urbanization and climate change, especially in rapidly developing areas where existing sewer systems lag behind growth. In order to minimize a system's functional failures during extreme rainfalls, localized engineering solutions are required for urban areas chronically suffering from pluvial floods. This study critically evaluates the Deep Tunnel Sewer System (DTSS) as a robust grey infrastructure solution for enhancing urban flood resilience, with a case study in the Gangnam region of Seoul, South Korea. To do so, we integrated a one-dimensional sewer model with a rapid flood spreading model to identify optimal routes and conduit diameters for the DTSS, focusing on four flood-related metrics: the total flood volume, the flood duration, the peak flooding rate, and the number of flooded nodes. Results indicate that, had the DTSS been in place, it could have reduced historical flood volumes over the last decade by 50.1-99.3%, depending on the DTSS route. Regarding the conduit diameter, an 8 m diameter was found to be optimal for minimizing all flood-related metrics. Our research also developed the Intensity-Duration-Frequency (IDF) surfaces in three dimensions, providing a correlation between simulated flood-related metrics and design rainfall characteristics to distinguish the effect of DTSS on flood risk reduction. Our findings demonstrate how highly engineered solutions can enhance urban flood resilience, but they may still face challenges during extreme heavy rainfalls with a 80-year frequency or above. This study contributes to rational decision-making and emergency management in the face of increasing urban pluvial flood risks.


Assuntos
Inundações , Resiliência Psicológica , Modelos Teóricos , Urbanização , República da Coreia , Cidades
3.
Nat Commun ; 15(1): 875, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287010

RESUMO

RNA binding proteins (RBPs) are key regulators of RNA processing and cellular function. Technologies to discover RNA targets of RBPs such as TRIBE (targets of RNA binding proteins identified by editing) and STAMP (surveying targets by APOBEC1 mediated profiling) utilize fusions of RNA base-editors (rBEs) to RBPs to circumvent the limitations of immunoprecipitation (CLIP)-based methods that require enzymatic digestion and large amounts of input material. To broaden the repertoire of rBEs suitable for editing-based RBP-RNA interaction studies, we have devised experimental and computational assays in a framework called PRINTER (protein-RNA interaction-based triaging of enzymes that edit RNA) to assess over thirty A-to-I and C-to-U rBEs, allowing us to identify rBEs that expand the characterization of binding patterns for both sequence-specific and broad-binding RBPs. We also propose specific rBEs suitable for dual-RBP applications. We show that the choice between single or multiple rBEs to fuse with a given RBP or pair of RBPs hinges on the editing biases of the rBEs and the binding preferences of the RBPs themselves. We believe our study streamlines and enhances the selection of rBEs for the next generation of RBP-RNA target discovery.


Assuntos
Proteínas de Ligação a RNA , RNA , RNA/metabolismo , Sítios de Ligação/genética , Proteínas de Ligação a RNA/metabolismo , Processamento Pós-Transcricional do RNA
4.
J Transl Med ; 22(1): 34, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191373

RESUMO

OBJECTIVES: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a significant medical challenge, with no indisputable pathophysiological mechanism identified to date. METHODS: Based on clinical clues, we hypothesized that 5-hydroxytryptamine (5-HT) hyperactivation is implicated in the pathogenic causes of ME/CFS and the associated symptoms. We experimentally evaluated this hypothesis in a series of mouse models. RESULTS: High-dose selective serotonin reuptake inhibitor (SSRI) treatment induced intra- and extracellular serotonin spillover in the dorsal raphe nuclei of mice. This condition resulted in severe fatigue (rota-rod, fatigue rotating wheel and home-cage activity tests) and ME/CFS-associated symptoms (nest building, plantar and open field test), along with dysfunction in the hypothalamic-pituitary-adrenal (HPA) axis response to exercise challenge. These ME/CFS-like features induced by excess serotonin were additionally verified using both a 5-HT synthesis inhibitor and viral vector for Htr1a (5-HT1A receptor) gene knockdown. CONCLUSIONS: Our findings support the involvement of 5-HTergic hyperactivity in the pathophysiology of ME/CFS. This ME/CFS-mimicking animal model would be useful for understanding ME/CFS biology and its therapeutic approaches.


Assuntos
Síndrome de Fadiga Crônica , Animais , Camundongos , Serotonina , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Sistema Hipotálamo-Hipofisário
5.
bioRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37745562

RESUMO

Circular RNAs (circRNAs) represent a class of widespread endogenous RNAs that regulate gene expression and thereby influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Specifically, we use temporal depletion of circHIPK3 or specific RNA binding proteins (RBPs) and identify several perturbed genes by RNA sequencing analyses. Using expression-coupled motif analyses of mRNA expression data from various knockdown experiments, we identify an 11-mer motif within circHIPK3, which is also enriched in genes that become downregulated upon circHIPK3 depletion. By mining eCLIP datasets, we find that the 11-mer motif constitutes a strong binding site for IGF2BP2 and validate this circHIPK3-IGF2BP2 interaction experimentally using RNA-immunoprecipitation and competition assays in bladder cancer cell lines. Our results suggest that circHIPK3 and IGF2BP2 mRNA targets compete for binding. Since the identified 11-mer motif found in circHIPK3 is enriched in upregulated genes following IGF2BP2 knockdown, and since IGF2BP2 depletion conversely globally antagonizes the effect of circHIPK3 knockdown on target genes, our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and thereby STAT3 mRNA levels. However, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Finally, we show that circHIPK3 expression correlates with overall survival of patients with bladder cancer. Our results are consistent with a model where relatively few cellular circHIPK3 molecules function as inducers of IGF2BP2 condensation thereby regulating STAT3 and other key factors for cell proliferation and potentially cancer progression.

6.
bioRxiv ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37808757

RESUMO

RNA binding proteins (RBPs) are key regulators of RNA processing and cellular function. Technologies to discover RNA targets of RBPs such as TRIBE (targets of RNA binding proteins identified by editing) and STAMP (surveying targets by APOBEC1 mediated profiling) utilize fusions of RNA base-editors (rBEs) to RBPs to circumvent the limitations of immunoprecipitation (CLIP)-based methods that require enzymatic digestion and large amounts of input material. To broaden the repertoire of rBEs suitable for editing-based RBP-RNA interaction studies, we have devised experimental and computational assays in a framework called PRINTER (protein-RNA interaction-based triaging of enzymes that edit RNA) to assess over thirty A-to-I and C-to-U rBEs, allowing us to identify rBEs that expand the characterization of binding patterns for both sequence-specific and broad-binding RBPs. We also propose specific rBEs suitable for dual-RBP applications. We show that the choice between single or multiple rBEs to fuse with a given RBP or pair of RBPs hinges on the editing biases of the rBEs and the binding preferences of the RBPs themselves. We believe our study streamlines and enhances the selection of rBEs for the next generation of RBP-RNA target discovery.

7.
Mol Cell ; 83(14): 2595-2611.e11, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37421941

RESUMO

RNA-binding proteins (RBPs) control RNA metabolism to orchestrate gene expression and, when dysfunctional, underlie human diseases. Proteome-wide discovery efforts predict thousands of RBP candidates, many of which lack canonical RNA-binding domains (RBDs). Here, we present a hybrid ensemble RBP classifier (HydRA), which leverages information from both intermolecular protein interactions and internal protein sequence patterns to predict RNA-binding capacity with unparalleled specificity and sensitivity using support vector machines (SVMs), convolutional neural networks (CNNs), and Transformer-based protein language models. Occlusion mapping by HydRA robustly detects known RBDs and predicts hundreds of uncharacterized RNA-binding associated domains. Enhanced CLIP (eCLIP) for HydRA-predicted RBP candidates reveals transcriptome-wide RNA targets and confirms RNA-binding activity for HydRA-predicted RNA-binding associated domains. HydRA accelerates construction of a comprehensive RBP catalog and expands the diversity of RNA-binding associated domains.


Assuntos
Aprendizado Profundo , Hydra , Animais , Humanos , RNA/metabolismo , Ligação Proteica , Sítios de Ligação/genética , Hydra/genética , Hydra/metabolismo
8.
Nat Protoc ; 17(5): 1223-1265, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35322209

RESUMO

Discovery of interaction sites between RNA-binding proteins (RBPs) and their RNA targets plays a critical role in enabling our understanding of how these RBPs control RNA processing and regulation. Cross-linking and immunoprecipitation (CLIP) provides a generalizable, transcriptome-wide method by which RBP/RNA complexes are purified and sequenced to identify sites of intermolecular contact. By simplifying technical challenges in prior CLIP methods and incorporating the generation of and quantitative comparison against size-matched input controls, the single-end enhanced CLIP (seCLIP) protocol allows for the profiling of these interactions with high resolution, efficiency and scalability. Here, we present a step-by-step guide to the seCLIP method, detailing critical steps and offering insights regarding troubleshooting and expected results while carrying out the ~4-d protocol. Furthermore, we describe a comprehensive bioinformatics pipeline that offers users the tools necessary to process two replicate datasets and identify reproducible and significant peaks for an RBP of interest in ~2 d.


Assuntos
RNA , Transcriptoma , Sítios de Ligação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunoprecipitação , Ligação Proteica , RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Res Sq ; 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35313591

RESUMO

The COVID-19 pandemic is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The betacoronvirus has a positive sense RNA genome which encodes for several RNA binding proteins. Here, we use enhanced crosslinking and immunoprecipitation to investigate SARS-CoV-2 protein interactions with viral and host RNAs in authentic virus-infected cells. SARS-CoV-2 proteins, NSP8, NSP12, and nucleocapsid display distinct preferences to specific regions in the RNA viral genome, providing evidence for their shared and separate roles in replication, transcription, and viral packaging. SARS-CoV-2 proteins expressed in human lung epithelial cells bind to 4773 unique host coding RNAs. Nine SARS-CoV-2 proteins upregulate target gene expression, including NSP12 and ORF9c, whose RNA substrates are associated with pathways in protein N-linked glycosylation ER processing and mitochondrial processes. Furthermore, siRNA knockdown of host genes targeted by viral proteins in human lung organoid cells identify potential antiviral host targets across different SARS-CoV-2 variants. Conversely, NSP9 inhibits host gene expression by blocking mRNA export and dampens cytokine productions, including interleukin-1α/ß. Our viral protein-RNA interactome provides a catalog of potential therapeutic targets and offers insight into the etiology of COVID-19 as a safeguard against future pandemics.

10.
bioRxiv ; 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35233578

RESUMO

The COVID-19 pandemic is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). The betacoronvirus has a positive sense RNA genome which encodes for several RNA binding proteins. Here, we use enhanced crosslinking and immunoprecipitation to investigate SARS-CoV-2 protein interactions with viral and host RNAs in authentic virus-infected cells. SARS-CoV-2 proteins, NSP8, NSP12, and nucleocapsid display distinct preferences to specific regions in the RNA viral genome, providing evidence for their shared and separate roles in replication, transcription, and viral packaging. SARS-CoV-2 proteins expressed in human lung epithelial cells bind to 4773 unique host coding RNAs. Nine SARS-CoV-2 proteins upregulate target gene expression, including NSP12 and ORF9c, whose RNA substrates are associated with pathways in protein N-linked glycosylation ER processing and mitochondrial processes. Furthermore, siRNA knockdown of host genes targeted by viral proteins in human lung organoid cells identify potential antiviral host targets across different SARS-CoV-2 variants. Conversely, NSP9 inhibits host gene expression by blocking mRNA export and dampens cytokine productions, including interleukin-1α/ß. Our viral protein-RNA interactome provides a catalog of potential therapeutic targets and offers insight into the etiology of COVID-19 as a safeguard against future pandemics.

11.
Cancer Discov ; 12(3): 836-855, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34620690

RESUMO

Mutations in splicing factors (SF) are the predominant class of mutations in myelodysplastic syndrome (MDS), but convergent downstream disease drivers remain elusive. To identify common direct targets of missplicing by mutant U2AF1 and SRSF2, we performed RNA sequencing and enhanced version of the cross-linking and immunoprecipitation assay in human hematopoietic stem/progenitor cells derived from isogenic induced pluripotent stem cell (iPSC) models. Integrative analyses of alternative splicing and differential binding converged on a long isoform of GNAS (GNAS-L), promoted by both mutant factors. MDS population genetics, functional and biochemical analyses support that GNAS-L is a driver of MDS and encodes a hyperactive long form of the stimulatory G protein alpha subunit, Gαs-L, that activates ERK/MAPK signaling. SF-mutant MDS cells have activated ERK signaling and consequently are sensitive to MEK inhibitors. Our findings highlight an unexpected and unifying mechanism by which SRSF2 and U2AF1 mutations drive oncogenesis with potential therapeutic implications for MDS and other SF-mutant neoplasms. SIGNIFICANCE: SF mutations are disease-defining in MDS, but their critical effectors remain unknown. We discover the first direct target of convergent missplicing by mutant U2AF1 and SRSF2, a long GNAS isoform, which activates G protein and ERK/MAPK signaling, thereby driving MDS and rendering mutant cells sensitive to MEK inhibition. This article is highlighted in the In This Issue feature, p. 587.


Assuntos
Síndromes Mielodisplásicas , Neoplasias , Processamento Alternativo , Cromograninas/genética , Cromograninas/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Síndromes Mielodisplásicas/genética , RNA/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo
12.
Appl Opt ; 60(16): 4793-4797, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34143044

RESUMO

We describe the application of structured imaging with a single-pixel camera to imaging through fog. We demonstrate the use of a high-pass filter on the detected bucket signals to suppress the effects of temporal variations of fog density and enable an effective reconstruction of the image. A quantitative analysis and comparison of several high-pass filters are demonstrated for the application. Both computational ghost imaging and compressive sensing techniques were used for image reconstruction and compressive sensing was observed to give a higher reconstructed image quality.

13.
Sci Adv ; 7(22)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34049871

RESUMO

For quantum-confined nanomaterials, size dispersion causes a static broadening of spectra that has been difficult to measure and invalidates all-optical methods for determining the maximum photovoltage that an excited state can generate. Using femtosecond two-dimensional (2D) spectroscopy to separate size dispersion broadening of absorption and emission spectra allows a test of single-molecule generalized Einstein relations between such spectra for colloidal PbS quantum dots. We show that 2D spectra and these relations determine the thermodynamic standard chemical potential difference between the lowest excited and ground electronic states, which gives the maximum photovoltage. Further, we find that the static line broadening from many slightly different quantum dot structures allows single-molecule generalized Einstein relations to determine the average single-molecule linewidth from Stokes' frequency shift between ensemble absorption and emission spectra.

14.
Front Oncol ; 10: 586232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335855

RESUMO

PURPOSE: To reduce patient and procedure identification errors by human interactions in radiotherapy delivery and surgery, a Biometric Automated Patient and Procedure Identification System (BAPPIS) was developed. BAPPIS is a patient identification and treatment procedure verification system using fingerprints. METHODS: The system was developed using C++, the Microsoft Foundation Class Library, the Oracle database system, and a fingerprint scanner. To register a patient, the BAPPIS system requires three steps: capturing a photograph using a web camera for photo identification, taking at least two fingerprints, and recording other specific patient information including name, date of birth, allergies, etc. To identify a patient, the BAPPIS reads a fingerprint, identifies the patient, verifies with a second fingerprint to confirm when multiple patients have same fingerprint features, and connects to the patient's record in electronic medical record (EMR) systems. To validate the system, 143 and 21 patients ranging from 36 to 98 years of ages were recruited from radiotherapy and breast surgery, respectively. The registration process for surgery patients includes an additional module, which has a 3D patient model. A surgeon could mark 'O' on the model and save a snap shot of patient in the preparation room. In the surgery room, a webcam displayed the patient's real-time image next to the 3D model. This may prevent a possible surgical mistake. RESULTS: 1,271 (96.9%) of 1,311 fingerprints were verified by BAPPIS using patients' 2nd fingerprints from 143 patients as the system designed. A false positive recognition was not reported. The 96.9% completion ratio is because the operator did not verify with another fingerprint after identifying the first fingerprint. The reason may be due to lack of training at the beginning of the study. CONCLUSION: We successfully demonstrated the use of BAPPIS to correctly identify and recall patient's record in EMR. BAPPIS may significantly reduce errors by limiting the number of non-automated steps.

15.
Genome Med ; 12(1): 112, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287884

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are stable, often highly expressed RNA transcripts with potential to modulate other regulatory RNAs. A few circRNAs have been shown to bind RNA-binding proteins (RBPs); however, little is known about the prevalence and distribution of these interactions in different biological contexts. METHODS: We conduct an extensive screen of circRNA-RBP interactions in the ENCODE cell lines HepG2 and K562. We profile circRNAs in deep-sequenced total RNA samples and analyze circRNA-RBP interactions using a large set of eCLIP data with binding sites of 150 RBPs. We validate interactions for select circRNAs and RBPs by performing RNA immunoprecipitation and functionally characterize our most interesting candidates by conducting knockdown studies followed by RNA-Seq. RESULTS: We generate a comprehensive catalog of circRNA-RBP interactions in HepG2 and K562 cells. We show that KHSRP binding sites are enriched in flanking introns of circRNAs and that KHSRP depletion affects circRNA biogenesis. We identify circRNAs that are highly covered by RBP binding sites and experimentally validate individual circRNA-RBP interactions. We show that circCDYL, a highly expressed circRNA with clinical and functional implications in bladder cancer, is almost completely covered with GRWD1 binding sites in HepG2 cells, and that circCDYL depletion counteracts the effect of GRWD1 depletion. Furthermore, we confirm interactions between circCDYL and RBPs in bladder cancer cells and demonstrate that circCDYL depletion affects hallmarks of cancer and perturbs the expression of key cancer genes, e.g., TP53. Finally, we show that elevated levels of circCDYL are associated with overall survival of bladder cancer patients. CONCLUSIONS: Our study demonstrates transcriptome-wide and cell-type-specific circRNA-RBP interactions that could play important regulatory roles in tumorigenesis.


Assuntos
Neoplasias/genética , RNA Circular , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Transcriptoma , Sítios de Ligação , Carcinogênese/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Éxons , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Íntrons , Células K562 , Transativadores/genética , Transativadores/metabolismo , Neoplasias da Bexiga Urinária/genética
17.
J Opt Soc Am A Opt Image Sci Vis ; 37(8): 1276-1281, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32749262

RESUMO

We present a new approach to coherent averaging in digital holography using singular value decomposition (SVD). Digital holography enables the extraction of phase information from intensity measurements. For this reason, SVD can be used to statistically determine the orthogonal vectors that align the complex-valued measurements from multiple frames and group common modes accounting for constant phase shift terms. The SVD approach enables the separation of multiple signals, which can be applied to remove undesired artifacts such as scatter in retrieved images. The advantages of the SVD approach are demonstrated here in experiments through fog-degraded holograms with spatially incoherent and coherent scatter.

18.
Genome Biol ; 21(1): 90, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252787

RESUMO

BACKGROUND: A critical step in uncovering rules of RNA processing is to study the in vivo regulatory networks of RNA binding proteins (RBPs). Crosslinking and immunoprecipitation (CLIP) methods enable mapping RBP targets transcriptome-wide, but methodological differences present challenges to large-scale analysis across datasets. The development of enhanced CLIP (eCLIP) enabled the mapping of targets for 150 RBPs in K562 and HepG2, creating a unique resource of RBP interactomes profiled with a standardized methodology in the same cell types. RESULTS: Our analysis of 223 eCLIP datasets reveals a range of binding modalities, including highly resolved positioning around splicing signals and mRNA untranslated regions that associate with distinct RBP functions. Quantification of enrichment for repetitive and abundant multicopy elements reveals 70% of RBPs have enrichment for non-mRNA element classes, enables identification of novel ribosomal RNA processing factors and sites, and suggests that association with retrotransposable elements reflects multiple RBP mechanisms of action. Analysis of spliceosomal RBPs indicates that eCLIP resolves AQR association after intronic lariat formation, enabling identification of branch points with single-nucleotide resolution, and provides genome-wide validation for a branch point-based scanning model for 3' splice site recognition. Finally, we show that eCLIP peak co-occurrences across RBPs enable the discovery of novel co-interacting RBPs. CONCLUSIONS: This work reveals novel insights into RNA biology by integrated analysis of eCLIP profiling of 150 RBPs with distinct functions. Further, our quantification of both mRNA and other element association will enable further research to identify novel roles of RBPs in regulating RNA processing.


Assuntos
Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Células Hep G2 , Humanos , Imunoprecipitação , Íntrons , Células K562 , RNA/metabolismo , Splicing de RNA , RNA Ribossômico/metabolismo , Sequências Repetitivas de Ácido Nucleico , Retroelementos , Spliceossomos/metabolismo
19.
J Transl Med ; 18(1): 7, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906979

RESUMO

BACKGROUND: Although medical requirements are urgent, no effective intervention has been proven for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). To facilitate the development of new therapeutics, we systematically reviewed the randomized controlled trials (RCTs) for CFS/ME to date. METHODS: RCTs targeting CFS/ME were surveyed using two electronic databases, PubMed and the Cochrane library, through April 2019. We included only RCTs that targeted fatigue-related symptoms, and we analyzed the data in terms of the characteristics of the participants, case definitions, primary measurements, and interventions with overall outcomes. RESULTS: Among 513 potentially relevant articles, 55 RCTs met our inclusion criteria; these included 25 RCTs of 22 different pharmacological interventions, 28 RCTs of 18 non-pharmacological interventions and 2 RCTs of combined interventions. These studies accounted for a total of 6316 participants (1568 males and 4748 females, 5859 adults and 457 adolescents). CDC 1994 (Fukuda) criteria were mostly used for case definitions (42 RCTs, 76.4%), and the primary measurement tools included the Checklist Individual Strength (CIS, 36.4%) and the 36-item Short Form health survey (SF-36, 30.9%). Eight interventions showed statistical significance: 3 pharmacological (Staphypan Berna, Poly(I):poly(C12U) and CoQ10 + NADH) and 5 non-pharmacological therapies (cognitive-behavior-therapy-related treatments, graded-exercise-related therapies, rehabilitation, acupuncture and abdominal tuina). However, there was no definitely effective intervention with coherence and reproducibility. CONCLUSIONS: This systematic review integrates the comprehensive features of previous RCTs for CFS/ME and reflects on their limitations and perspectives in the process of developing new interventions.


Assuntos
Terapia Cognitivo-Comportamental , Síndrome de Fadiga Crônica , Adolescente , Adulto , Terapia por Exercício , Síndrome de Fadiga Crônica/terapia , Feminino , Humanos , Masculino , Ensaios Clínicos Controlados Aleatórios como Assunto
20.
Biomolecules ; 10(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906307

RESUMO

Chronic fatigue syndrome (CFS) is one of the most intractable diseases and is characterized by severe central fatigue that impairs even daily activity. To date, the pathophysiological mechanisms are uncertain and no therapies exist. Therefore, a proper animal model reflecting the clinical features of CFS is urgently required. We compared two CFS animal models most commonly used, by injection with lipopolysaccharide (LPS from Escherichia coli O111:B4) or polyinosinic: polycytidylic acid (poly I:C), along with bilateral adrenalectomy (ADX) as another possible model. Both LPS- and poly I:C-injected mice dominantly showed depressive behaviors, while ADX led to fatigue-like performances with high pain sensitivity. In brain tissues, LPS injection notably activated microglia and the 5-hydroxytryptamine (HT)1A receptor in the prefrontal cortex and hippocampus. Poly I:C-injection also remarkably activated the 5-HT transporter and 5-HT1A receptor with a reduction in serotonin levels in the brain. ADX particularly activated astrocytes and transforming growth factor beta (TGF-ß) 1 in all brain regions. Our results revealed that LPS and poly I:C animal models approximate depressive disorder more closely than CFS. We suggest that ADX is a possible method for establishing a mouse model of CFS reflecting clinical features, especially in neuroendocrine system.


Assuntos
Modelos Animais de Doenças , Síndrome de Fadiga Crônica/metabolismo , Síndrome de Fadiga Crônica/fisiopatologia , Adrenalectomia/métodos , Animais , Encéfalo/metabolismo , Hipocampo/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Sistemas Neurossecretores/metabolismo , Sistemas Neurossecretores/fisiopatologia , Poli I-C/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...