Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38862391

RESUMO

PURPOSE: The duties of paramedics and emergency medical technicians (P&EMTs) are continuously changing due to developments in medical systems. This study presents evaluation goals for P&EMTs by analyzing their work, especially the tasks that new P&EMTs (with less than 3 years' experience) find difficult, to foster the training of P&EMTs who could adapt to emergency situations after graduation. METHODS: A questionnaire was created based on prior job analyses of P&EMTs. The survey questions were reviewed through focus group interviews, from which 253 task elements were derived. A survey was conducted from July 10, 2023 to October 13, 2023 on the frequency, importance, and difficulty of the 6 occupations in which P&EMTs were employed. RESULTS: The P&EMTs' most common tasks involved obtaining patients' medical histories and measuring vital signs, whereas the most important task was cardiopulmonary resuscitation (CPR). The task elements that the P&EMTs found most difficult were newborn delivery and infant CPR. New paramedics reported that treating patients with fractures, poisoning, and childhood fever was difficult, while new EMTs reported that they had difficulty keeping diaries, managing ambulances, and controlling infection. CONCLUSION: Communication was the most important item for P&EMTs, whereas CPR was the most important skill. It is important for P&EMTs to have knowledge of all tasks; however, they also need to master frequently performed tasks and those that pose difficulties in the field. By deriving goals for evaluating P&EMTs, changes could be made to their education, thereby making it possible to train more capable P&EMTs.


Assuntos
Pessoal Técnico de Saúde , Competência Clínica , Avaliação Educacional , Auxiliares de Emergência , Humanos , Auxiliares de Emergência/educação , República da Coreia , Inquéritos e Questionários , Pessoal Técnico de Saúde/educação , Avaliação Educacional/métodos , Feminino , Masculino , Grupos Focais , Adulto , Serviços Médicos de Emergência , Reanimação Cardiopulmonar/educação , Comunicação , Paramédico
3.
Life Sci ; 328: 121903, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37394095

RESUMO

AIMS: Caveolae are invaginated, Ω-shaped membrane structures. They are now recognized as portals for signal transduction of multiple chemical and mechanical stimuli. Notably, the contribution of caveolae has been reported to be receptor-specific. However, details of how they differentially contribute to receptor signaling remain unclear. MAIN METHODS: Using isometric tension measurements, patch-clamping, and western blotting, we examined the contribution of caveolae and their related signaling pathways to serotonergic (5-HT2A receptor-mediated) and adrenergic (α1-adrenoceptor-mediated) signaling in rat mesenteric arteries. KEY FINDINGS: Disruption of caveolae by methyl-ß-cyclodextrin effectively blocked vasoconstriction mediated by the 5-HT2A receptor (5-HT2AR), but not by the α1-adrenoceptor. Caveolar disruption selectively impaired 5-HT2AR-mediated voltage-dependent K+ channel (Kv) inhibition, but not α1-adrenoceptor-mediated Kv inhibition. In contrast, both serotonergic and α1-adrenergic effects on vasoconstriction, as well as Kv currents, were similarly blocked by the Src tyrosine kinase inhibitor PP2. However, inhibition of protein kinase C (PKC) by either GO6976 or chelerythrine selectively attenuated the effects mediated by the α1-adrenoceptor, but not by 5-HT2AR. Disruption of caveolae decreased 5-HT2AR-mediated Src phosphorylation, but not α1-adrenoceptor-mediated Src phosphorylation. Finally, the PKC inhibitor GO6976 blocked Src phosphorylation by the α1-adrenoceptor, but not by 5-HT2AR. SIGNIFICANCE: 5-HT2AR-mediated Kv inhibition and vasoconstriction are dependent on caveolar integrity and Src tyrosine kinase, but not on PKC. In contrast, α1-adrenoceptor-mediated Kv inhibition and vasoconstriction are not dependent on caveolar integrity, but rather on PKC and Src tyrosine kinase. Caveolae-independent PKC is upstream of Src activation for α1-adrenoceptor-mediated Kv inhibition and vasoconstriction.


Assuntos
Proteína Quinase C , Quinases da Família src , Ratos , Animais , Quinases da Família src/metabolismo , Proteína Quinase C/metabolismo , Cavéolas/metabolismo , Adrenérgicos/metabolismo , Adrenérgicos/farmacologia , Serotonina/farmacologia , Serotonina/metabolismo , Vasoconstrição , Receptor 5-HT2A de Serotonina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores Adrenérgicos/metabolismo
4.
Korean J Physiol Pharmacol ; 26(5): 313-323, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36039732

RESUMO

Atrial fibrillation (AF) is the most common supraventricular arrhythmia, and it corresponds highly with exercise intensity. Here, we induced AF in mice using acetylcholine (ACh)-CaCl2 for 7 days and aimed to determine the appropriate exercise intensity (no, low, moderate, high) to protect against AF by running the mice at different intensities for 4 weeks before the AF induction by ACh-CaCl2. We examined the AF-induced atrial remodeling using electrocardiogram, patch-clamp, and immunohistochemistry. After the AF induction, heart rate, % increase of heart rate, and heart weight/body weight ratio were significantly higher in all the four AF groups than in the normal control; highest in the high-ex AF and lowest in the low-ex (lower than the no-ex AF), which indicates that low-ex treated the AF. Consistent with these changes, G protein-gated inwardly rectifying K+ currents, which were induced by ACh, increased in an exercise intensity-dependent manner and were lower in the low-ex AF than the no-ex AF. The peak level of Ca2+ current (at 0 mV) increased also in an exercise intensity-dependent manner and the inactivation time constants were shorter in all AF groups except for the low-ex AF group, in which the time constant was similar to that of the control. Finally, action potential duration was shorter in all the four AF groups than in the normal control; shortest in the high-ex AF and longest in the low-ex AF. Taken together, we conclude that low-intensity exercise protects the heart from AF, whereas high-intensity exercise might exacerbate AF.

5.
Biochem Biophys Rep ; 30: 101251, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35313645

RESUMO

As the geriatric population and life expectancy increase, the interest in preventing geriatric diseases, such as sarcopenia, is increasing. However, the causes of sarcopenia are unclear, and current diagnostic methods for sarcopenia are unreliable. We hypothesized that the changes in the expression of certain miRNAs may be associated with the pathophysiology of sarcopenia. Herein, we analyzed the miRNA expression profiles in the blood of young (3-months-old) healthy rats, old sarcopenic (17-months-old) rats, and age-matched (17-months-old) control rats. The changes in miRNA expression levels were analyzed using Bowtie 2 software. A total of 523 miRNAs were detected in the rat serum. Using scatter plots and clustering heatmap data, we found 130 miRNAs that were differentially expressed in sarcopenic rats (>2-fold change) compared to the expression in young healthy and age-matched control rats. With a threshold of >5-fold change, we identified 14 upregulated miRNAs, including rno-miR-133b-3p, rno-miR-133a-3p, rno-miR-133c, rno-miR-208a-3p, and rno-miR434-5p among others in the serum of sarcopenic rats. A protein network map based on these 14 miRNAs identified the genes involved in skeletal muscle differentiation, among which Notch1, Egr2, and Myocd represented major nodes. The data obtained in this study are potentially useful for the early diagnosis of sarcopenia and for the identification of novel therapeutic targets for the treatment and/or prevention of sarcopenia.

6.
Microvasc Res ; 136: 104165, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33845105

RESUMO

Phototherapy has been tried for treating cardiovascular diseases. In particular, ultraviolet and blue visible lights were suggested to be useful due to their nitric oxide (NO)-production ability in the skin. However, the effects of blue light on the arterial contractility are controversial. Here, we hypothesized that appropriate protocol of blue laser can induce selective vasorelaxation by activating vasodilating signaling molecules in arteries. Using organ chamber arterial mechanics, NO assay, Matrigel assay, and microarray, we showed that a 200-Hz, 300-µs, 445-nm pulsed-laser (total energy of 600 mJ; spot size 4 mm) induced selective vasorelaxation, without vasocontraction in rat mesenteric arteries. The laser stimulation increased NO production in the cord blood-endothelial progenitor cells (CB-EPCs). Both the laser-induced vasorelaxation and NO production were inhibited by a non-selective, pan-NO synthase inhibitor, L-NG-Nitro arginine methyl ester. Microarray study in CB-EPCs suggested up-regulation of cryptochrome (CRY)2 as well as NO synthase (NOS)1 and NOSTRIN (NOS trafficking) by the laser. In conclusion, this study suggests that the 445-nm blue puled-laser can induce vasorelaxation possibly via the CRY photoreceptors and NOSs activation. The blue laser-therapy would be useful for treating systemic hypertension as well as improving local blood flow depending on the area of irradiation.


Assuntos
Células Progenitoras Endoteliais/efeitos da radiação , Lasers , Terapia com Luz de Baixa Intensidade/instrumentação , Artérias Mesentéricas/efeitos da radiação , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Vasodilatação/efeitos da radiação , Animais , Células Cultivadas , Células Progenitoras Endoteliais/enzimologia , Ativação Enzimática , Sangue Fetal/citologia , Regulação da Expressão Gênica , Humanos , Masculino , Artérias Mesentéricas/enzimologia , Óxido Nítrico Sintase/genética , Ratos Sprague-Dawley , Transdução de Sinais
7.
Sci Rep ; 9(1): 6446, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015490

RESUMO

Recent parallel studies clearly indicated that Merkel cells and the mechanosensitive piezo2 ion channel play critical roles in the light-touch somatosensation. Moreover, piezo2 was suggested to be a light-touch sensing ion channel without a role in pain sensing in mammals. However, biophysical characteristics of piezo2, such as single channel conductance and sensitivities to various mechanical stimuli, are unclear, hampering a precise understanding of its role in touch sensation. Here, we describe the biophysical properties of piezo2 in human Merkel cell carcinoma (MCC)-13 cells; piezo2 is a low-threshold, positive pressure-specific, curvature-sensitive, mechanically activated cation channel with a single channel conductance of ~28.6 pS. Application of step indentations under the whole-cell mode of the patch-clamp technique, and positive pressures ≥5 mmHg under the cell-attached mode, activated piezo2 currents in MCC-13 and human embryonic kidney 293 T cells where piezo2 was overexpressed. By contrast, application of a negative pressure failed to activate piezo2 in these cells, whereas both positive and negative pressure activated piezo1 in a similar manner. Our results are the first to demonstrate single channel recordings of piezo2. We anticipate that our findings will be a starting point for a more sophisticated understanding of piezo2 roles in light-touch sensation.


Assuntos
Canais Iônicos/metabolismo , Pressão , Tato , Linhagem Celular Tumoral , Células HEK293 , Humanos , Mecanotransdução Celular
8.
J Vis Exp ; (143)2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30663667

RESUMO

Fluid flow is an important environmental stimulus that controls many physiological and pathological processes, such as fluid flow-induced vasodilation. Although the molecular mechanisms for the biological responses to fluid flow/shear force are not fully understood, fluid flow-mediated regulation of ion channel gating may contribute critically. Therefore, fluid flow/shear force sensitivity of ion channels has been studied using the patch-clamp technique. However, depending on the experimental protocol, the outcomes and interpretation of data can be erroneous. Here, we present experimental and theoretical evidence for fluid flow-related errors and provide methods for estimating, preventing, and correcting these errors. Changes in junction potential between the Ag/AgCl reference electrode and bathing fluid were measured with an open pipette filled with 3 M KCl. Fluid flow could then shift the liquid/metal junction potential to approximately 7 mV. Conversely, by measuring the voltage shift induced by fluid flow, we estimated the ion concentration in the unstirred boundary layer. In the static condition, the real ion concentrations adjacent to the Ag/AgCl reference electrode or ion channel inlet at the cell-membrane surface can reach as low as approximately 30% of that in the flow condition. Placing an agarose 3 M KCl bridge between the bathing fluid and reference electrode may have prevented this problem of junction potential shifting. However, the unstirred layer effect adjacent to the cell membrane surface could not be fixed in this way. Here, we provide a method for measuring real ion concentrations in the unstirred boundary layer with an open patch-clamp pipette, emphasizing the importance of using an agarose salt-bridge while studying fluid flow-induced regulation of ion currents. Therefore, this novel approach, which takes into consideration the real concentrations of ions in the unstirred boundary layer, may provide useful insight on the experimental design and data interpretation related to fluid shear stress regulation of ion channels.


Assuntos
Canais Iônicos/metabolismo , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp/métodos , Animais
9.
Clin Exp Hypertens ; 41(3): 280-286, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29771623

RESUMO

Mulberry (Morus alba) has been used in traditional oriental medicine since ages. Recently, it has been reported that mulberry produces hypotensive effects through the eNOS signaling pathway. However, the mechanism underlying the hypotensive effects of mulberry is not entirely clear. Moreover, the effects of mulberry on vascular remodeling events such as hyperplasia, an important etiology in the pathogenesis of hypertension and arteriosclerosis, are also ambiguous. Here, we hypothesized that an ethanolic extract of mulberry fruit (EMF) has beneficial effects on vascular remodeling and produces hypotensive effects. The effects of a 6-week oral administration of EMF were examined in spontaneously hypertensive rats (SHRs). The animals were divided into four groups: normotensive control (Wistar Kyoto rats), non-treated SHR, low-dose (100 mg/kg) EMF-treated SHR, and high-dose (300 mg/kg) EMF-treated SHR. Our results showed that the EMF-diet normalizes hypertension in SHRs in a dose-dependent manner, by preventing smooth muscle proliferation, thickening of the tunica media, and vascular hyper-reactivity. The endothelial functions were not substantially affected by the EMF diet in our experimental setting. In conclusion, we suggest that the mulberry fruit could act as a food supplement for reducing blood pressure in hypertensive subjects through its effects on smooth muscle proliferation and vascular contractility.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Frutas , Morus , Extratos Vegetais/farmacologia , Remodelação Vascular/efeitos dos fármacos , Animais , Hipertensão/tratamento farmacológico , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Fitoterapia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Túnica Média/efeitos dos fármacos
10.
Free Radic Res ; 53(1): 94-103, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30526150

RESUMO

Oxidative stress is associated with many cardiovascular diseases, such as hypertension and arteriosclerosis. Oxidative stress reportedly activates the L-type voltage-gated calcium channel (VDCCL) and elevates [Ca2+]i in many cells. However, how oxidative stress activates VDCCL under clinical setting and the consequence for arteries are unclear. Here, we examined the hypothesis that hydrogen peroxide (H2O2) regulates membrane potential (Em) by altering Na+ influx through cation channels, which consequently activates VDCCL to induce vasoconstriction in rat mesenteric arteries. To measure the tone of the endothelium-denuded arteries, a conventional isometric organ chamber was used. Membrane currents and Em were recorded by the patch-clamp technique. [Ca2+]i and [Na+]i were measured with microfluorometry using Fura2-AM and SBFI-AM, respectively. We found that H2O2 (10 and 100 µM) increased arterial contraction, and nifedipine blocked the effects of H2O2 on isometric contraction. H2O2 increased [Ca2+]i as well as [Na+]i, and depolarised Em. Gd3+ (1 µM) blocked all these H2O2-induced effects including Em depolarisation and increases in [Ca2+]i and [Na+]i. Although both nifedipine (30 nM) and low Na+ bath solution completely prevented the H2O2-induced increase in [Na+], they only partly inhibited the H2O2-induced effects on [Ca2+]i and Em. Taken together, the results suggested that H2O2 constricts rat arteries by causing Em depolarisation and VDCCL activation through activating Gd3+-and nifedipine-sensitive, Na+-permeable channels as well as Gd3+-sensitive Ca2+-permeable cation channels. We suggest that unidentified Na+-permeable cation channels as well as Ca2+-permeable cation channels may function as important mediators for oxidative stress-induced vascular dysfunction.


Assuntos
Artérias/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Peróxido de Hidrogênio/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/metabolismo , Vasoconstrição/efeitos dos fármacos , Animais , Artérias/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
11.
Exp Mol Med ; 50(4): 1-8, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29700292

RESUMO

MK801 and ketamine, which are phencyclidine (PCP) derivative N-methyl-d-aspartate receptor (NMDAr) blockers, reportedly enhance the function of 5-hydroxytryptamine (HT)-2A receptors (5-HT2ARs). Both are believed to directly affect the pathogenesis of schizophrenia, as well as hypertension. 5-HT2AR signaling involves the inhibition of Kv conductance. This study investigated the interaction of these drugs with Kv1.5, which plays important roles in 5-HT2AR signaling and in regulating the excitability of the cardiovascular and nervous system, and the potential role of this interaction in the enhancement of the 5-HT2AR-mediated response. Using isometric organ bath experiments with arterial rings and conventional whole-cell patch-clamp recording of Chinese hamster ovary (CHO) cells ectopically overexpressing Kv1.5, we examined the effect of ketamine and MK801 on 5-HT2AR-mediated vasocontraction and Kv1.5 channels. Both ketamine and MK801 potentiated 5-HT2AR-mediated vasocontraction. This potentiation of 5-HT2AR function occurred in a membrane potential-dependent manner, indicating the involvement of ion channel(s). Both ketamine and MK801 rapidly and directly inhibited Kv1.5 channels from the extracellular side independently of NMDArs. The potencies of MK801 in facilitating the 5-HT2AR-mediated response and blocking Kv1.5 were higher than those of ketamine. Our data demonstrated the direct inhibition of Kv1.5 channels by MK801/ketamine and indicated that this inhibition may potentiate the functions of 5-HT2ARs. We suggest that 5-HT2AR-Kv1.5 may serve as a receptor-effector module in response to 5-HT and is a promising target in the pathogenesis of MK801-/ketamine-induced disease states such as hypertension and schizophrenia.


Assuntos
Maleato de Dizocilpina/farmacologia , Ketamina/farmacologia , Canal de Potássio Kv1.5/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Células CHO , Cricetulus , Hipertensão/metabolismo , Canal de Potássio Kv1.5/metabolismo , Masculino , Técnicas de Patch-Clamp , Ratos Sprague-Dawley , Receptor 5-HT2A de Serotonina/metabolismo , Esquizofrenia/metabolismo , Vasoconstritores/farmacologia
12.
Pflugers Arch ; 469(5-6): 829-842, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28303387

RESUMO

Activation of L-type voltage-dependent Ca2+ channels (VDCCL) by membrane stretch contributes to many biological responses such as myogenic contraction of arteries. However, mechanism for the stretch-induced VDCCL activation is unclear. In this study, we examined the hypothesis that caveolar remodeling and its related signaling cascade contribute to the stretch-induced activation of VDCCL in rat mesenteric arterial smooth muscle cells. The VDCCL currents were recorded with nystatin-perforated or with conventional whole-cell patch-clamp technique. Hypotonic (~230 mOsm) swelling-induced membrane stretch reversibly increased the VDCCL currents. Electron microscope and confocal imaging analysis revealed that both hypotonic swelling and cholesterol depletion by methyl-ß-cychlodextrin (MßCD) similarly disrupted the caveolae structure and translocated caveolin-1 (Cav-1) from membrane to cytosolic space. Accordingly, MßCD also increased VDCCL currents. Moreover, subsequent hypotonic swelling after MßCD treatment failed to increase the VDCCL currents further. Western blotting experiments revealed that hypotonic swelling phosphorylated Cav-1 and JNK. Inhibitors of tyrosine kinases (genistein) and JNK (SP00125) prevented the swelling-induced facilitation of VDCCL currents. Knockdown of Cav-1 by small interfering RNA blocked both the VDCCL current facilitation by stretch and the related phosphorylation of JNK. Taken together, the results suggest that membrane stretch is transduced to the facilitation of VDCCL currents via caveolar structure-dependent tyrosine phosphorylation of Cav-1 and subsequent activation of JNK in rat mesenteric arterial myocytes.


Assuntos
Canais de Cálcio/metabolismo , Cavéolas/metabolismo , Mecanotransdução Celular , Miócitos de Músculo Liso/metabolismo , Potenciais de Ação , Animais , Cavéolas/ultraestrutura , Caveolina 1/metabolismo , Células Cultivadas , Colesterol/deficiência , MAP Quinase Quinase 4/metabolismo , Masculino , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Miócitos de Músculo Liso/ultraestrutura , Pressão Osmótica , Ratos , Ratos Sprague-Dawley , beta-Ciclodextrinas/farmacologia
13.
Sci Rep ; 6: 39585, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004830

RESUMO

The inward rectifier Kir2.1 current (IKir2.1) was reported to be facilitated by fluid flow. However, the mechanism underlying this facilitation remains uncertain. We hypothesized that during K+ influx or efflux, [K+] adjacent to the outer mouth of the Kir2.1 channel might decrease or increase, respectively, compared with the average [K+] of the bulk extracellular solution, and that fluid flow could restore the original [K+] and result in the apparent facilitation of IKir2.1. We recorded the IKir2.1 in RBL-2H3 cells and HEK293T cells that were ectopically over-expressed with Kir2.1 channels by using the whole-cell patch-clamp technique. Fluid-flow application immediately increased the IKir2.1, which was not prevented by either the pretreatment with inhibitors of various protein kinases or the modulation of the cytoskeleton and caveolae. The magnitudes of the increases of IKir2.1 by fluid flow were driving force-dependent. Simulations performed using the Nernst-Planck mass equation indicated that [K+] near the membrane surface fell markedly below the average [K+] of the bulk extracellular solution during K+ influx, and, notably, that fluid flow restored the decreased [K+] at the cell surface in a flow rate-dependent manner. These results support the "convection-regulation hypothesis" and define a novel interpretation of fluid flow-induced modulation of ion channels.


Assuntos
Membrana Celular/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/química , Actinas/química , Animais , Simulação por Computador , Citocalasina D/química , Citoesqueleto/metabolismo , Eletrofisiologia , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Íons , Potenciais da Membrana/efeitos dos fármacos , Técnicas de Patch-Clamp , Faloidina/química , Ratos , beta-Ciclodextrinas/química
14.
Korean J Physiol Pharmacol ; 20(6): 605-611, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27847437

RESUMO

Ketamine is an anesthetic with hypertensive effects, which make it useful for patients at risk of shock. However, previous ex vivo studies reported vasodilatory actions of ketamine in isolated arteries. In this study, we reexamined the effects of ketamine on arterial tones in the presence and absence of physiological concentrations of 5-hydroxytryptamine (5-HT) and norepinephrine (NE) by measuring the isometric tension of endothelium-denuded rat mesenteric arterial rings. Ketamine little affected the resting tone of control mesenteric arterial rings, but, in the presence of 5-HT (100~200 nM), ketamine (10~100 µM) markedly contracted the arterial rings. Ketamine did not contract arterial rings in the presence of NE (10 nM), indicating that the vasoconstrictive action of ketamine is 5-HT-dependent. The concentration-response curves (CRCs) of 5-HT were clearly shifted to the left in the presence of ketamine (30 µM), whereas the CRCs of NE were little affected by ketamine. The left shift of the 5-HT CRCs caused by ketamine was reversed with ketanserin, a competitive 5-HT2A receptor inhibitor, indicating that ketamine facilitated the activation of 5-HT2A receptors. Anpirtoline and BW723C86, selective agonists of 5-HT1B and 5-HT2B receptors, respectively, did not contract arterial rings in the absence or presence of ketamine. These results indicate that ketamine specifically enhances 5-HT2A receptor-mediated vasoconstriction and that it is vasoconstrictive in a clinical setting. The facilitative action of ketamine on 5-HT2A receptors should be considered in ketamine-induced hypertension as well as in the pathogenesis of diseases such as schizophrenia, wherein experimental animal models are frequently generated using ketamine.

15.
J Biol Chem ; 291(27): 14199-14212, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27189941

RESUMO

The viral vector-mediated overexpression of the defined transcription factors, Brn4/Pou3f4, Sox2, Klf4, and c-Myc (BSKM), could induce the direct conversion of somatic fibroblasts into induced neural stem cells (iNSCs). However, viral vectors may be randomly integrated into the host genome thereby increasing the risk for undesired genotoxicity, mutagenesis, and tumor formation. Here we describe the generation of integration-free iNSCs from mouse fibroblasts by non-viral episomal vectors containing BSKM. The episomal vector-derived iNSCs (e-iNSCs) closely resemble control NSCs, and iNSCs generated by retrovirus (r-iNSCs) in morphology, gene expression profile, epigenetic status, and self-renewal capacity. The e-iNSCs are functionally mature, as they could differentiate into all the neuronal cell types both in vitro and in vivo Our study provides a novel concept for generating functional iNSCs using a non-viral, non-integrating, plasmid-based system that could facilitate their biomedical applicability.


Assuntos
Células-Tronco Neurais/citologia , Animais , Fibroblastos/citologia , Vetores Genéticos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos C3H , Transfecção
16.
PLoS One ; 11(3): e0149198, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930604

RESUMO

The proarrhythmic effects of new drugs have been assessed by measuring rapidly activating delayed-rectifier K+ current (IKr) antagonist potency. However, recent data suggest that even drugs thought to be highly specific IKr blockers can be arrhythmogenic via a separate, time-dependent pathway such as late Na+ current augmentation. Here, we report a mechanism for a quinolone antibiotic, sparfloxacin-induced action potential duration (APD) prolongation that involves increase in late L-type Ca2+ current (ICaL) caused by a decrease in Ca2+-dependent inactivation (CDI). Acute exposure to sparfloxacin, an IKr blocker with prolongation of QT interval and torsades de pointes (TdP) produced a significant APD prolongation in rat ventricular myocytes, which lack IKr due to E4031 pretreatment. Sparfloxacin reduced peak ICaL but increased late ICaL by slowing its inactivation. In contrast, ketoconazole, an IKr blocker without prolongation of QT interval and TdP produced reduction of both peak and late ICaL, suggesting the role of increased late ICaL in arrhythmogenic effect. Further analysis showed that sparfloxacin reduced CDI. Consistently, replacement of extracellular Ca2+ with Ba2+ abolished the sparfloxacin effects on ICaL. In addition, sparfloxacin modulated ICaL in a use-dependent manner. Cardiomyocytes from adult mouse, which is lack of native IKr, demonstrated similar increase in late ICaL and afterdepolarizations. The present findings show that sparfloxacin can prolong APD by augmenting late ICaL. Thus, drugs that cause delayed ICaL inactivation and IKr blockage may have more adverse effects than those that selectively block IKr. This mechanism may explain the reason for discrepancies between clinically reported proarrhythmic effects and IKr antagonist potencies.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/farmacologia , Fluoroquinolonas/farmacologia , Miócitos Cardíacos/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Canais de Potássio Éter-A-Go-Go/metabolismo , Ventrículos do Coração/patologia , Camundongos , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Ratos Sprague-Dawley , Torsades de Pointes/induzido quimicamente
17.
Biomed Opt Express ; 6(9): 3482-93, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26417517

RESUMO

The usefulness of visible lasers in treating vascular diseases is controversial. It is probable that multiple effects of visible lasers on blood vessels and their unclear mechanisms have hampered the usefulness of this therapy. Therefore, elucidating the precise actions and mechanisms of the effects of lasers on blood vessels would provide insight into potential biomedical applications. Here, using organ chamber isometric contraction measurements, western blotting, patch-clamp, and en face immunohistochemistry, we showed that a 445 nm diode laser contracted rat aortic rings, both by activating endothelial nitric oxide synthase and by increasing oxidative stress. In addition to the effects on the endothelium, the laser also directly relaxed and contracted vascular smooth muscle by inhibiting L-type Ca(2+) channels and by activating protein tyrosine kinases, respectively. Thus, we conclude that exposure to 445 nm laser might contract and dilate blood vessels in the endothelium and smooth muscle via distinct mechanisms.

18.
J Pharmacol Sci ; 127(1): 92-102, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25704024

RESUMO

MK801 (dizocilpine), a phencyclidine (PCP) derivative, is a potent noncompetitive antagonist of the N-Methyl-D-aspartate receptor (NMDAr). Another PCP derivative, ketamine, was reported to block voltage-gated K(+) (Kv) channels, which was independent of NMDAr function. Kv currents are major regulators of the membrane potential (Em) and excitability of muscles and neurons. Here, we investigated the effect of MK801 on the Kv channels and Em in rat mesenteric arterial smooth muscle cells (RMASMCs). We used the whole-cell patch clamp technique to analyze the effect of MK801 enantiomers on Kv channels and Em. (+)MK801 inhibited Kv channels in a concentration-dependent manner (IC50 of 89.1 ± 13.1 µM, Hill coefficient of 1.05 ± 0.08). The inhibition was voltage- and state- independent. (+)MK801 didn't influence steady-state activation and inactivation of Kv channels. (+)MK801 treatment depolarized Em in a concentration-dependent manner and concomitantly decreased membrane conductance. (-)MK801 also similarly inhibited the Kv channels (IC50 of 134.0 ± 17.5 µM, Hill coefficient of 0.87 ± 0.09). These results indicate that MK801 directly inhibits the Kv channel in a state-independent manner in RMASMCs. This MK801-mediated inhibition of Kv channels should be considered when assessing the various pharmacological effects produced by MK801, such as schizophrenia, neuroprotection, and hypertension.


Assuntos
Maleato de Dizocilpina/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Animais , Relação Dose-Resposta a Droga , Masculino , Potenciais da Membrana/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Ratos , Estereoisomerismo
19.
Pflugers Arch ; 467(2): 285-97, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24756196

RESUMO

Hydrogen peroxide (H2O2) is an endothelium-derived hyperpolarizing factor. Since opposing vasoactive effects have been reported for H2O2 depending on the vascular bed and experimental conditions, this study was performed to assess whether H2O2 acts as a vasodilator in the rat mesenteric artery and, if so, to determine the underlying mechanisms. H2O2 elicited concentration-dependent relaxation in mesenteric arteries precontracted with norepinephrine. The vasodilatory effect of H2O2 was reversed by treatment with dithiothreitol. H2O2-elicited vasodilation was significantly reduced by blocking 4-aminopyridine (4-AP)-sensitive Kv channels, but it was resistant to blockers of big-conductance Ca(2+)-activated K(+) channels and inward rectifier K(+) channels. A patch-clamp study in mesenteric arterial smooth muscle cells (MASMCs) showed that H2O2 increased Kv currents in a concentration-dependent manner. H2O2 speeded up Kv channel activation and shifted steady state activation to hyperpolarizing potentials. Similar channel activation was seen with oxidized glutathione (GSSG). The H2O2-mediated channel activation was prevented by glutathione reductase. Consistent with S-glutathionylation, streptavidin pull-down assays with biotinylated glutathione ethyl ester showed incorporation of glutathione (GSH) in the Kv channel proteins in the presence of H2O2. Interestingly, conditions of increased oxidative stress within MASMCs impaired the capacity of H2O2 to stimulate Kv channels. Not only was the H2O2 stimulatory effect much weaker, but the inhibitory effect of H2O2 was unmasked. These data suggest that H2O2 activates 4-AP-sensitive Kv channels, possibly through S-glutathionylation, which elicits smooth muscle relaxation in rat mesenteric arteries. Furthermore, our results support the idea that the basal redox status of MASMCs determines the response of Kv currents to H2O2.


Assuntos
Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Músculo Liso Vascular/metabolismo , Canais de Potássio/metabolismo , Vasodilatação , 4-Aminopiridina/farmacologia , Potenciais de Ação , Animais , Células Cultivadas , Glutationa Redutase/metabolismo , Masculino , Artérias Mesentéricas/citologia , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley
20.
Exp Mol Med ; 45: e67, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24336234

RESUMO

Serotonin (5-hydroxytryptamine (5-HT)) is a neurotransmitter that regulates a variety of functions in the nervous, gastrointestinal and cardiovascular systems. Despite such importance, 5-HT signaling pathways are not entirely clear. We demonstrated previously that 4-aminopyridine (4-AP)-sensitive voltage-gated K(+) (Kv) channels determine the resting membrane potential of arterial smooth muscle cells and that the Kv channels are inhibited by 5-HT, which depolarizes the membranes. Therefore, we hypothesized that 5-HT contracts arteries by inhibiting Kv channels. Here we studied 5-HT signaling and the detailed role of Kv currents in rat mesenteric arteries using patch-clamp and isometric tension measurements. Our data showed that inhibiting 4-AP-sensitive Kv channels contracted arterial rings, whereas inhibiting Ca(2+)-activated K(+), inward rectifier K(+) and ATP-sensitive K(+) channels had little effect on arterial contraction, indicating a central role of Kv channels in the regulation of resting arterial tone. 5-HT-induced arterial contraction decreased significantly in the presence of high KCl or the voltage-gated Ca(2+) channel (VGCC) inhibitor nifedipine, indicating that membrane depolarization and the consequent activation of VGCCs mediate the 5-HT-induced vasoconstriction. The effects of 5-HT on Kv currents and arterial contraction were markedly prevented by the 5-HT2A receptor antagonists ketanserin and spiperone. Consistently, α-methyl 5-HT, a 5-HT2 receptor agonist, mimicked the 5-HT action on Kv channels. Pretreatment with a Src tyrosine kinase inhibitor, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, prevented both the 5-HT-mediated vasoconstriction and Kv current inhibition. Our data suggest that 4-AP-sensitive Kv channels are the primary regulator of the resting tone in rat mesenteric arteries. 5-HT constricts the arteries by inhibiting Kv channels via the 5-HT2A receptor and Src tyrosine kinase pathway.


Assuntos
Artérias Mesentéricas/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Serotonina/farmacologia , Vasoconstrição , Quinases da Família src/metabolismo , 4-Aminopiridina/farmacologia , Potenciais de Ação , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/metabolismo , Células Cultivadas , Ketanserina/farmacologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Contração Muscular , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Nifedipino/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Espiperona/farmacologia , Quinases da Família src/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...