Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0307943, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39074091

RESUMO

Notch ligands [jagged (JAG) and, delta-like (DLL) families] and receptors [NOTCH family] are key regulators of Notch signaling. NOTCH signaling contributes to vascular development, tissue homeostasis, angiogenesis, and cancer progression. To elucidate the universal functions of the JAG, DLL, and NOTCH families and their connections with various biological functions, we examined 15 types of cancer using The Cancer Genome Atlas clinical database. We selected the differentially expressed genes (DEGs), which were positively correlated to the JAG, DLL, and NOTCH families in each cancer. We selected positive and negative hallmark signatures across cancer types. These indicated biological features associated with angiogenesis, hypoxia, KRAS signaling, cell cycle, and MYC targets by gene ontology and gene set enrichment analyses using DEGs. Furthermore, we analyzed single-cell RNA sequencing data to examine the expression of JAG, DLL, and NOTCH families and enrichment of hallmark signatures. Positive signatures identified using DEGs, such as KRAS signaling and hypoxia, were enriched in clusters with high expression of JAG, DLL, and NOTCH families. We subsequently validated the correlation between the JAG, DLL, and NOTCH families and clinical stages, including treatment response, metastasis, and recurrence. In addition, we performed survival analysis to identify hallmark signatures that critically affect patient survival when combining the expression of JAG, DLL, and NOTCH families. By combining the DEG enrichment and hallmark signature enrichment in survival analysis, we suggested unexplored regulatory functions and synergistic effects causing synthetic lethality. Taken together, our observations demonstrate the functions of JAG, DLL, and NOTCH families in cancer malignancy and provide insights into their molecular regulatory mechanisms.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias , Receptores Notch , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Transdução de Sinais/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Simulação por Computador , Perfilação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Relevância Clínica
2.
Int J Mol Sci ; 25(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38892012

RESUMO

A key element for the cost-effective development of cultured meat is a cell line culturable in serum-free conditions to reduce production costs. Heme supplementation in cultured meat mimics the original meat flavor and color. This study introduced a bacterial extract generated from Corynebacterium that was selected for high-heme expression by directed evolution. A normal porcine cell line, PK15, was used to apply the bacterial heme extract as a supplement. Consistent with prior research, we observed the cytotoxicity of PK15 to the heme extract at 10 mM or higher. However, after long-term exposure, PK15 adapted to tolerate up to 40 mM of heme. An RNA-seq analysis of these heme-adapted PK15 cells (PK15H) revealed a set of altered genes, mainly involved in cell proliferation, metabolism, and inflammation. We found that cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1), lactoperoxidase (LPO), and glutathione peroxidase 5 (GPX5) were upregulated in the PK15H heme dose dependently. When we reduced serum serially from 2% to serum free, we derived the PK15H subpopulation that was transiently maintained with 5-10 mM heme extract. Altogether, our study reports a porcine cell culturable in high-heme media that can be maintained in serum-free conditions and proposes a marker gene that plays a critical role in this adaptation process.


Assuntos
Heme , Animais , Suínos , Heme/metabolismo , Linhagem Celular , Meios de Cultura Livres de Soro , Proliferação de Células/efeitos dos fármacos , Carne/análise , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Técnicas de Cultura de Células/métodos , Carne in vitro
3.
Bioprocess Biosyst Eng ; 47(4): 549-556, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499686

RESUMO

Heme, found in hemoproteins, is a valuable source of iron, an essential mineral. The need for an alternative hemoprotein source has emerged due to the inherent risks of large-scale livestock farming and animal proteins. Corynebacterium glutamicum, regarded for Qualified Presumption of Safety or Generally Recognized as Safe, can biosynthesize hemoproteins. C. glutamicum single-cell protein (SCP) can be a valuable alternative hemoprotein for supplying heme iron without adversely affecting blood fat levels. We constructed the chemostat culture system to increase hemoprotein content in C. glutamicum SCP. Through adaptive evolution, hemoprotein levels could be naturally increased to address oxidative stress resulting from enhanced growth rate. In addition, we used several specific plasmids containing growth-accelerating genes and the hemA promoter to expedite the evolutionary process. Following chemostat culture for 15 days, the plasmid in selected descendants was cured. The evolved strains showed improved specific growth rates from 0.59 h-1 to 0.62 h-1, 20% enhanced resistance to oxidative stress, and increased heme concentration from 12.95 µg/g-DCW to 14.22-15.24 µg/g-DCW. Notably, the putative peptidyl-tRNA hydrolase-based evolved strain manifested the most significant increase (30%) of hemoproteins. This is the first report presenting the potential of a growth-acceleration-targeted evolution (GATE) strategy for developing non-GMO industrial strains with increased bio-product productivity.


Assuntos
Corynebacterium glutamicum , Animais , Plasmídeos , Ferro/metabolismo , Heme/metabolismo , Aceleração , Engenharia Metabólica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA