Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 15371, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958784

RESUMO

Optical polarization is an indispensable component in photonic applications, the orthogonality of which extends the degree of freedom of information, and strongly polarized and highly efficient small-size emitters are essential for compact polarization-based devices. We propose a group III-nitride quantum wire for a highly-efficient, strongly-polarized emitter, the polarization anisotropy of which stems solely from its one-dimensionality. We fabricated a site-selective and size-controlled single quantum wire using the geometrical shape of a three-dimensional structure under a self-limited growth mechanism. We present a strong and robust optical polarization anisotropy at room temperature emerging from a group III-nitride single quantum wire. Based on polarization-resolved spectroscopy and strain-included 6-band k·p calculations, the strong anisotropy is mainly attributed to the anisotropic strain distribution caused by the one-dimensionality, and its robustness to temperature is associated with an asymmetric quantum confinement effect.

2.
Nano Lett ; 20(12): 8461-8468, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-32910661

RESUMO

Controlling the in-plane symmetry of wide-bandgap semiconductor quantum dots (QDs) is essential for room temperature quantum photonic applications using polarization entangled photon pairs. Herein, we report the formation of 3-fold symmetric group III-nitride QDs at the apex of a triangular pyramid via a self-limited growth mechanism. We employed the in-plane rotational symmetry of the c-plane of a Wurtzite crystal and the large built-in piezoelectric field to reduce fine-structure splitting. The QDs exhibit emission that is distinguishable from that of sidewall quantum wells, and the biexciton-exciton cascade possesses a single-photon nature. We observed the relatively low optical polarization anisotropy and small fine structure splitting under the measurement limit (270 µeV) with the 3-fold symmetric QD. In contrast with current strategies that consider group III-nitride QDs as strongly polarized single-photon emitters, our approach for controlling the QD symmetry provides a new perspective on such QDs, as polarization-entangled photon pairs.

3.
Nanoscale Adv ; 2(4): 1449-1455, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36132295

RESUMO

Group III-nitride semiconductor-based ultraviolet (UV) light emitting diodes have been suggested as a substitute for conventional arc-lamps such as mercury, xenon and deuterium arc-lamps, since they are compact, efficient and have a long lifetime. However, in previously reported studies, group III-nitride UV light emitting diodes did not show a broad UV spectrum range as conventional arc-lamps, which restricts their application in fields such as medical therapy and UV spectrophotometry. Here, we propose GaN quantum dots (QDs) grown on different facets of hexagonal truncated pyramid structures formed on a conventional (0001) sapphire substrate. A hexagonal truncated GaN pyramid structure includes {101̄1} semipolar facets as well as a (0001) polar facet, which have intrinsically different piezoelectric fields and growth rates of GaN QDs. Consequently, we successfully demonstrated a plateau-like broadband UV spectrum ranging from ∼400 nm (UV-A) to ∼270 nm (UV-C) from the GaN QDs. In addition, at the top-edge of the truncated pyramid structure, a strain was locally suppressed compared to the center of the truncated pyramid structure. As a result, various emission wavelengths in the UV range were achieved from the GaN QDs grown on the sidewall, top-edge and top-center of hexagonal truncated pyramid structures, which ultimately provide a broadband UV spectrum with high efficiency.

4.
Sci Rep ; 9(1): 8282, 2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164674

RESUMO

Highly polarized photoluminescence (PL) from c-plane InGaN/GaN multiple quantum wells (MQWs) grown on stripe-shaped cavity-engineered sapphire substrate (SCES) was realized. The polarization ratio was as high as 0.74 at room temperature. High-resolution X-ray reciprocal space mapping measurements revealed that the InGaN quantum wells on GaN/SCES template were under considerable anisotropic in-plane strain states of -1.178% and -1.921% along the directions perpendicular and parallel to the stripe-pattern, respectively. The anisotropic strain states were attributed to the anisotropic alignment of cavity-incorporated sapphire nano-membranes, which accommodated both anisotropic elastic relaxation in the InGaN quantum well plane as well as the graded elastic relaxation along the vertical direction in the GaN template adjacent to the InGaN/GaN MQWs. The partial strain relaxation in the InGaN wells also contributed to reduction of quantum confined Stark effect, resulting in four times higher PL intensity than InGaN/GaN MQWs on planar sapphire substrate. From theoretical calculations based on k∙p perturbation theory, it was found that fundamental origin of the polarized optical emission was strain-induced modification of valence band structures of the InGaN/GaN MQWs on the SCES. This study will allow us to realize light emitting diodes with highly polarized emission with conventional c-plane sapphire substrates by strain-induced valence band modification.

5.
Opt Express ; 25(4): 3143-3152, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28241530

RESUMO

Intersubband absorption properties of lattice-matched BGaN/AlN quantum well (QW) structures grown on AlN substrate are theoretically investigated using an effective mass theory considering the nonparabolicity of the conduction band. These results are compared with those of GaN/AlN QW structures. The intersubband absorption coefficient of the BGaN/AlN QW structure is shown to be enhanced significantly, compared to that of the conventional GaN/AlN QW structure. This can be explained by the fact that the BGaN/AlN QW structure exhibits larger intersuband dipole moment and quasi-Fermi-level separation than the GaN/AlN QW structure, due to the increase in the carrier confinement by a larger internal field. We expect that the BGaN/AlN QW structure with a high absorption coefficient can be used for telecommunication applications at 1.55 µm under the lattice-matched condition, instead of the conventional GaN/AlN QW structure with the large strain.

6.
Sci Rep ; 6: 20718, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26880097

RESUMO

In group-III nitrides in use for white light-emitting diodes (LEDs), optical gain, measure of luminous efficiency, is very low owing to the built-in electrostatic fields, low exciton binding energy, and high-density misfit dislocations due to lattice-mismatched substrates. Cuprous halides I-VII semiconductors, on the other hand, have negligible built-in field, large exciton binding energies and close lattice matched to silicon substrates. Recent experimental studies have shown that the luminescence of I-VII CuCl grown on Si is three orders larger than that of GaN at room temperature. Here we report yet unexplored potential of cuprous halides systems by investigating the optical gain of CuCl/CuI quantum wells. It is found that the optical gain and the luminescence are much larger than that of group III-nitrides due to large exciton binding energy and vanishing electrostatic fields. We expect that these findings will open up the way toward highly efficient cuprous halides based LEDs compatible to Si technology.

7.
Opt Express ; 23(3): 3623-9, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836214

RESUMO

Light emission characteristics of ultraviolet (UV) B(x)Al(y)Ga(1-x-y)N/AlN quantum well (QW) structures were using the multiband effective-mass theory. The TE-polarized spontaneous emission is found to be significantly improved owing to the decrease in the lattice-mismatch between the well and the substrate with the inclusion of boron. However, the spontaneous emission peak begins to decrease when the boron composition exceeds a critical value (x = 0.08 for y = 0.2), which is mainly due to an increase in the heavy-hole effective mass. In addition, in the case of QW structures with higher Al composition (y > 0.5), the light emission is shown to decrease with increasing the boron composition because the characteristic of the topmost valence subband is changed to the crystal-field splitoff hole band. Hence, we expect that B(x)Al(y)Ga(1-x-y)N/AlN QW structures with y < 0.5 can be used as a TE-polarized light source with a high efficiency.

8.
Opt Express ; 22(12): 14850-8, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24977580

RESUMO

Partial strain relaxation effects on polarization ratio of semipolar (112̄2) InxGa1−xN/GaN quantum well (QW) structures grown on relaxed InGaN buffers were investigated using the multiband effective-mass theory. The absolute value of the polarization ratio gradually decreases with increasing In composition in InGaN buffer layer when the strain relaxation ratio (ε0y'y'−εy'y')/ε0y'y' along y'-axis is assumed to be linearly proportional to the difference of lattice constants between the well and the buffer layer. Also, it changes its sign for the QW structure grown on InGaN buffer layer with a relatively larger In composition (x > 0.07). These results are in good agreement with the experiment. This can be explained by the fact that, with increasing In composition in the InGaN subsrate, the spontaneous emission rate for the y'-polarization gradually increases while that for x'-polarization decreases due to the decrease in a matrix element at the band-edge (k‖ = 0).

9.
Opt Express ; 22 Suppl 3: A857-66, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24922392

RESUMO

We discuss the influence of V-pits and their energy barrier, originating from its facets of (101¯1) planes, on the luminescence efficiency of InGaN LEDs. Experimental analysis using cathodoluminescence (CL) exhibits that thin facets of V-pits of InGaN quantum wells (QWs) appear to be effective in improving the emission intensity, preventing the injected carriers from recombining non-radiatively with threading dislocations (TDs). Our theoretical calculation based on the self-consistent approach with adopting k⋅p method reveals that higher V-pit energy barrier heights in InGaN QWs more efficiently suppress the non-radiative recombination at TDs, thus enhancing the internal quantum efficiency (IQE).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...