Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Mol Cancer ; 23(1): 45, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424542

RESUMO

BACKGROUND: In the myeloid compartment of the tumor microenvironment, CD244 signaling has been implicated in immunosuppressive phenotype of monocytes. However, the precise molecular mechanism and contribution of CD244 to tumor immunity in monocytes/macrophages remains elusive due to the co-existing lymphoid cells expressing CD244. METHODS: To directly assess the role of CD244 in tumor-associated macrophages, monocyte-lineage-specific CD244-deficient mice were generated using cre-lox recombination and challenged with B16F10 melanoma. The phenotype and function of tumor-infiltrating macrophages along with antigen-specific CD8 T cells were analyzed by flow cytometry and single cell RNA sequencing data analysis, and the molecular mechanism underlying anti-tumorigenic macrophage differentiation, antigen presentation, phagocytosis was investigated ex vivo. Finally, the clinical feasibility of CD244-negative monocytes as a therapeutic modality in melanoma was confirmed by adoptive transfer experiments. RESULTS: CD244fl/flLysMcre mice demonstrated a significant reduction in tumor volume (61% relative to that of the CD244fl/fl control group) 14 days after tumor implantation. Within tumor mass, CD244fl/flLysMcre mice also showed higher percentages of Ly6Clow macrophages, along with elevated gp100+IFN-γ+ CD8 T cells. Flow cytometry and RNA sequencing data demonstrated that ER stress resulted in increased CD244 expression on monocytes. This, in turn, impeded the generation of anti-tumorigenic Ly6Clow macrophages, phagocytosis and MHC-I antigen presentation by suppressing autophagy pathways. Combining anti-PD-L1 antibody with CD244-/- bone marrow-derived macrophages markedly improved tumor rejection compared to the anti-PD-L1 antibody alone or in combination with wild-type macrophages. Consistent with the murine data, transcriptome analysis of human melanoma tissue single-cell RNA-sequencing dataset revealed close association between CD244 and the inhibition of macrophage maturation and function. Furthermore, the presence of CD244-negative monocytes/macrophages significantly increased patient survival in primary and metastatic tumors. CONCLUSION: Our study highlights the novel role of CD244 on monocytes/macrophages in restraining anti-tumorigenic macrophage generation and tumor antigen-specific T cell response in melanoma. Importantly, our findings suggest that CD244-deficient macrophages could potentially be used as a therapeutic agent in combination with immune checkpoint inhibitors. Furthermore, CD244 expression in monocyte-lineage cells serve as a prognostic marker in cancer patients.


Assuntos
Melanoma , Monócitos , Humanos , Animais , Camundongos , Monócitos/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Macrófagos/metabolismo , Linfócitos T CD8-Positivos , Carcinogênese/metabolismo , Microambiente Tumoral , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo
2.
Angew Chem Int Ed Engl ; 63(6): e202318459, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38105412

RESUMO

Intravital fluorescence imaging of functional osteoclasts within their intact disease context provides valuable insights into the intricate biology at the microscopic level, facilitating the development of therapeutic approaches for osteoclast-associated bone diseases. However, there is a lack of studies investigating osteoclast activity within deep-seated bone lesions using appropriate fluorescent probes, despite the advantages offered by the multi-photon excitation system in enhancing deep tissue imaging resolution. In this study, we report on the intravital tracking of osteoclast activity in three distinct murine bone disease models. We utilized a cathepsin K (CatK)-responsive two-photon fluorogenic probe (CatKP1), which exhibited a notable fluorescence turn-on response in the presence of active CatK. By utilizing CatKP1, we successfully monitored a significant increase in osteoclast activity in hindlimb long bones and its attenuation through pharmacological intervention without sacrificing mice. Thus, our findings highlight the efficacy of CatKP1 as a valuable tool for unraveling pathological osteoclast behavior and exploring novel therapeutic strategies.


Assuntos
Doenças Ósseas , Osteoclastos , Animais , Camundongos , Osteoclastos/patologia , Catepsina K , Osso e Ossos , Doenças Ósseas/patologia , Diagnóstico por Imagem
3.
Bone Res ; 11(1): 22, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085481

RESUMO

Myeloid-derived suppressor cells (MDSCs) are bone marrow (BM)-derived immunosuppressive cells in the tumor microenvironment, but the mechanism of MDSC mobilization from the BM remains unclear. We investigated how BM stromal cell activation by PTH1R contributes to MDSC mobilization. PTH1R activation by parathyroid hormone (PTH) or PTH-related peptide (PTHrP), a tumor-derived counterpart, mobilized monocytic (M-) MDSCs from murine BM without increasing immunosuppressive activity. In vitro cell-binding assays demonstrated that α4ß1 integrin and vascular cell adhesion molecule (VCAM)-1, expressed on M-MDSCs and osteoblasts, respectively, are key to M-MDSC binding to osteoblasts. Upon PTH1R activation, osteoblasts express VEGF-A and IL6, leading to Src family kinase phosphorylation in M-MDSCs. Src inhibitors suppressed PTHrP-induced MDSC mobilization, and Src activation in M-MDSCs upregulated two proteases, ADAM-17 and MMP7, leading to VCAM1 shedding and subsequent disruption of M-MDSC tethering to osteoblasts. Collectively, our data provide the molecular mechanism of M-MDSC mobilization in the bones of tumor hosts.

4.
J Bone Miner Metab ; 41(3): 337-344, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36729305

RESUMO

Bone is a frequent site of metastasis for multiple types of solid tumors in organs such as prostate, breast, lung, etc., accounting for significant morbidities and mortalities of afflicted patients. One of the major problems of bone metastasis is lack of biomarkers for early diagnosis and for monitoring therapeutic responses. Medical imaging modalities such as computerized tomography, magnetic resonance imaging, and radioactive isotope-based bone scans are currently standard clinical practices, yet these imaging techniques are limited to detect early lesions or to accurately monitor the metastatic disease progression during standard and/or experimental therapies. Accordingly, development of novel blood biomarkers rationalizes extensive basic research and clinical development. This review article covers the up-to-date information on protein- and cell-based biomarkers of bone metastasis that are currently used in the clinical practices and also are under development.


Assuntos
Neoplasias Ósseas , Masculino , Humanos , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/terapia , Biomarcadores , Tomografia Computadorizada por Raios X , Imageamento por Ressonância Magnética
5.
Biomaterials ; 290: 121859, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306683

RESUMO

Alternatively activated or M2 macrophages, as opposed to the well characterized pro-inflammatory or M1 macrophages, vitally regulate anti-inflammation, wound healing, and tissue repair to maintain tissue homeostasis. Although ubiquitous presence of macrophages in diverse tissues, exposed to different physical environments, infers distinct immune responses of M2 macrophages with high phenotypic heterogeneity, the underlying mechanism of how the varying extracellular mechanical conditions alter their immunological activation remains unclear. Here, we demonstrate that M2 activation requires a threshold mechanical cue from the extracellular microenvironment, and matrix rigidity-dependent macrophage spreading is mediated by the F-actin formation that is essential to regulate mechanosensitive M2 activation of macrophages. We identified a new mechanosensing function of STAT6 (signal transducer and activator of transcription 6), a key transcription factor for M2 activation, whose intranuclear transportation is promoted by the rigid matrix that facilitates the F-actin formation. Our findings further highlight the critical role of mechanosensitive M2 activation of macrophages in long-term adaptation to the extracellular microenvironment by bridging nuclear mechanosensation and immune responses.


Assuntos
Actinas , Ativação de Macrófagos , Fator de Transcrição STAT6/metabolismo , Transporte Ativo do Núcleo Celular , Macrófagos
6.
J Immunol Methods ; 510: 113348, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058258

RESUMO

Multi-color flow cytometry is the standard approach for immunophenotyping clinical samples. With the recent advances in cancer immunotherapy, myeloid-derived suppressor cells (MDSC), immature myeloid-lineage cells in cancer patient blood and the tumor microenvironment, are highlighted as an important immune cell population that correlates with prognosis and therapeutic efficacy. In contrast to their clear functions and existence, immunophenotyping of MDSC is not consistent among investigators due to surface antigens overlapping with many normal hematopoietic lineage cell populations. We performed a clinical study and analyzed more than 1000 breast cancer patients blood samples to quantitate MDSC during breast cancer progression. In this methodology manuscript, we described detailed procedures for study design, sample logistics and handling, staining and flow cytometric analysis. This protocol used a 7-color fluorochrome-conjugated antibody panel to analyze polymorphonuclear (PMN)- and monocytic (M)-MDSC subsets simultaneously. The interim analysis results of this study showed that both PMN and M-MDSC populations are increased in patients with bone metastasis compared with patients with visceral organ metastasis. In conclusion, this work provides a versatile, comprehensive, and practical protocol to measure MDSC in patient blood samples.


Assuntos
Neoplasias da Mama , Células Supressoras Mieloides , Antígenos de Superfície , Neoplasias da Mama/patologia , Feminino , Citometria de Fluxo/métodos , Corantes Fluorescentes/metabolismo , Humanos , Imunofenotipagem , Microambiente Tumoral
7.
Cancers (Basel) ; 12(12)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33302414

RESUMO

The Mycobacterium Bacillus Calmette-Guérin cell wall skeleton (BCG-CWS), the main immune active center of BCG, is a potent candidate non-infectious immunotherapeutic drug and an alternative to live BCG for use against urothelial carcinoma. However, its application in anticancer therapy is limited, as BCG-CWS tends to aggregate in both aqueous and non-aqueous solvents. To improve the internalization of BCG-CWS into bladder cancer cells without aggregation, BCG-CWS was nanoparticulated at a 180 nm size in methylene chloride and subsequently encapsulated with conventional liposomes (CWS-Nano-CL) using an emulsified lipid (LEEL) method. In vitro cell proliferation assays showed that CWS-Nano-CL was more effective at suppressing bladder cancer cell growth compared to nonenveloped BCG-CWS. In an orthotopic implantation model of luciferase-tagged MBT2 bladder cancer cells, encapsulated BCG-CWS nanoparticles could enhance the delivery of BCG-CWS into the bladder and suppress tumor growth. Treatment with CWS-Nano-CL induced the inhibition of the mammalian target of rapamycin (mTOR) pathway and the activation of AMP-activated protein kinase (AMPK) phosphorylation, leading to apoptosis, both in vitro and in vivo. Furthermore, the antitumor activity of CWS-Nano-CL was mediated predominantly by reactive oxygen species (ROS) generation and AMPK activation, which induced endoplasmic reticulum (ER) stress, followed by c-Jun N-terminal kinase (JNK) signaling-mediated apoptosis. Therefore, our data suggest that the intravesical instillation of liposome-encapsulated BCG-CWS nanoparticles can facilitate BCG-CW cellular endocytosis and provide a promising drug-delivery system as a therapeutic strategy for BCG-mediated bladder cancer treatment.

8.
Biochem Biophys Res Commun ; 530(4): 680-685, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768190

RESUMO

Triple-negative breast cancer (TNBC) that lacks expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) is a breast cancer subtype with very aggressive metastasis and poor prognosis. Unique cartilage matrix-associated protein (UCMA) is a vitamin K-dependent protein (VKDP) with a high-density γ-carboxyglutamic acid (Gla) domain due to the action of vitamin K. UCMA promotes osteoblast differentiation and mineral deposition in bone and suppresses calcification in vessels. However, correlation between UCMA and TNBC is unknown. This study investigated the inhibitory effect of UCMA on TNBC cell in vitro migration, invasion, and colony formation in addition to in vivo tumorigenesis. Cell migration and invasion significantly decreased in Ucma-overexpressing MDA-MB-231 and 4T1 cells compared to the mock control cells. Also, colony formation and the number of colonies significantly decreased in Ucma-overexpressing MDA-MB-231 and 4T1 cells. These results indicate that UCMA significantly inhibits the migration, invasion, and colony formation of TNBC cells. In an in vivo xenograft mouse model, tumor growth significantly decreased in mice bearing Ucma-overexpressing TNBC cells compared to the mock control cells, indicating that UCMA reduced in vivo tumor growth, similar to the inhibitory role of UCMA in vitro. Survival analysis using publicly available database showed that high UCMA expression significantly correlated with favorable relapse-free survival in TNBC patients compared to those with the other VKDPs, matrix Gla protein (MGP) and osteocalcin (OCN). Collectively, this study suggests that UCMA is a promising new therapeutic agent for TNBC.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Invasividade Neoplásica/patologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular/análise , Camundongos Endogâmicos BALB C , Neoplasias de Mama Triplo Negativas/metabolismo
9.
J Bone Miner Res ; 35(10): 1838-1849, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32379371

RESUMO

Current diagnosis of bone metastasis (BM) in breast cancer relies on structural changes of bone that occur only in the advanced stage. A sensitive biomarker for detecting early progression of bone metastasis is urgently required. We performed clinical and preclinical studies to investigate diagnostic value of circulating osteocalcin-positive cells (cOC) in breast cancer bone metastasis. Metastatic breast cancer patients (n = 92) with or without bone metastasis (ie, BM+ or BM- ) were enrolled, and cOC were measured at enrollment. Patients were followed up for bone metastasis progression for 18 months. BM+ patients (n = 59) were divided into progressive (PD) or stable disease (SD) groups, based on imaging studies at the end of the 18-month study. The PD group had higher baseline cOC compared with the SD group. Furthermore, higher cOC resulted in reduced BM progression-free survival. Three patients in the BM- group (n = 33) developed new BM during the 18-month study, and these patients had a higher level of baseline cOC compared with the remaining BM- patients. In murine preclinical studies, cOC increased at early time points when micro-metastases were evident only by histology but undetectable by bioluminescence imaging. Also, cOC levels predicted the progression of BM and correlated significantly with BM tumor burden. cOC increased in the early phase of breast cancer BM and can predict BM progression, supporting cOC as a potential novel biomarker. © 2020 American Society for Bone and Mineral Research.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Osteocalcina/análise , Animais , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/secundário , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Humanos , Camundongos , Carga Tumoral
10.
J Cell Biochem ; 120(11): 19186-19201, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31297862

RESUMO

Rapamycin is well-recognized in the clinical therapeutic intervention for patients with cancer by specifically targeting mammalian target of rapamycin (mTOR) kinase. Rapamycin regulates general autophagy to clear damaged cells. Previously, we identified increased expression of messenger RNA levels of NBR1 (the neighbor of BRCA1 gene; autophagy cargo receptor) in human urothelial cancer (URCa) cells, which were not exhibited in response to rapamycin treatment for cell growth inhibition. Autophagy plays an important role in cellular physiology and offers protection against chemotherapeutic agents as an adaptive response required for maintaining cellular energy. Here, we hypothesized that loss of NBR1 sensitizes human URCa cells to growth inhibition induced by rapamycin treatment, leading to interruption of protective autophagic activation. Also, the potential role of mitochondria in regulating autophagy was tested to clarify the mechanism by which rapamycin induces apoptosis in NBR1-knockdown URCa cells. NBR1-knockdown URCa cells exhibited enhanced sensitivity to rapamycin associated with the suppression of autophagosomal elongation and mitochondrial defects. Loss of NBR1 expression altered the cellular responses to rapamycin treatment, resulting in impaired ATP homeostasis and an increase in reactive oxygen species (ROS). Although rapamycin treatment-induced autophagy by adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in NBR1-knockdown cells, it did not process the conjugated form of LC3B-II after activation by unc-51 like autophagy-activating kinase 1 (ULK1). NBR1-knockdown URCa cells exhibited rather profound mitochondrial dysfunctions in response to rapamycin treatment as evidenced by Δψm collapse, ATP depletion, ROS accumulation, and apoptosis activation. Therefore, our findings provide a rationale for rapamycin treatment of NBR1-knockdown human urothelial cancer through the regulation of autophagy and mitochondrial dysfunction by regulating the AMPK/mTOR signaling pathway, indicating that NBR1 can be a potential therapeutic target of human urothelial cancer.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Mitocôndrias/metabolismo , Proteínas de Neoplasias/deficiência , Sirolimo/farmacologia , Neoplasias da Bexiga Urinária/metabolismo , Apoptose/genética , Autofagia/genética , Linhagem Celular Tumoral , Deleção de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas de Neoplasias/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
11.
J Med Chem ; 62(13): 6063-6082, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31257875

RESUMO

(E)-3,4-Dihydroxybenzylideneacetone (compound 1) inhibited receptor activator of NF-κB ligand-induced osteoclastogenesis of C57BL/6 bone marrow monocyte/macrophages with IC50 of 7.8 µM (IC50 of alendronate, 3.7 µM) while stimulating the differentiation of MC3T3-E1 osteoblastic cells, accompanied by the induction of Runt-related transcription factor 2, alkaline phosphatase, and osteocalcin. (E)-4-(3-Hydroxy-4-methoxyphenyl)-3-buten-2-one (compound 2c) showed a dramatically increased osteoclast-inhibitory potency with IC50 of 0.11 µM while sustaining osteoblast-stimulatory activity. (E)-4-(4-Hydroxy-3-methoxyphenyl)-3-buten-2-one (compound 2g) stimulated alkaline phosphatase production 2-fold at 50 µM without changing osteoclast-inhibitory activity, compared with compound 1. Oral administration of compounds 1, 2c, and 2g prevented ovariectomy-induced osteoporosis in ddY mice to a degree proportional to their osteoclastogenesis-inhibitory potencies. The administration of 1 (mg/kg)/d compound 2c ameliorated histomorphometry of osteoporotic bone to a degree comparable with 10 (mg/kg)/d alendronate. Conclusively, the in vitro capacity of a few benzylideneacetone derivatives to inhibit osteoclastogenesis supported by independent osteoblastogenesis activation was convincingly reflected in in vivo management of osteoporosis, suggesting a potential novel therapeutics for osteopenic diseases.


Assuntos
Compostos de Benzilideno/uso terapêutico , Butanonas/uso terapêutico , Osteogênese/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/farmacocinética , Butanonas/síntese química , Butanonas/farmacocinética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Fêmur/patologia , Humanos , Camundongos , Estrutura Molecular , Subunidade p50 de NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoblastos/metabolismo , Osteocalcina/metabolismo , Osteoclastos/metabolismo , Osteoporose/tratamento farmacológico , Células RAW 264.7 , Relação Estrutura-Atividade , Tíbia/patologia
12.
Sci Rep ; 9(1): 8726, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217507

RESUMO

Aberrant activation of fibroblast growth factor receptor (FGFR) signalling contributes to progression and metastasis of many types of cancers including breast cancer. Accordingly, FGFR targeted tyrosine kinase inhibitors (TKIs) are currently under development. However, the efficacy of FGFR TKIs in the bone microenvironment where breast cancer cells most frequently metastasize and also where FGFR is biologically active, has not been clearly investigated. We investigated the FGFR-mediated interactions among cancer and the bone microenvironment stromal cells (osteoblasts and osteoclasts), and also the effects of FGFR inhibition in bone metastasis. We showed that addition of culture supernatant from the MDA-MB-134-VI FGFR-amplified breast cancer cells-activated FGFR siganalling in osteoblasts, including increased expression of RANKL, M-CSF, and osteoprotegerin (OPG). Further in vitro analyses showed that AZD4547, an FGFR TKI currently in clinical trials for breast cancer, decreased RANKL and M-CSF, and subsequently RANKL and M-CSF-dependent osteoclastogenesis of murine bone marrow monocytes. Moreover, AZD4547 suppressed osteoclastogenesis and tumor-induced osteolysis in an orthotopic breast cancer bone metastasis mouse model using FGFR non-amplified MDA-MB-231 cells. Collectively, our results support that FGFR inhibitors inhibit the bone microenvironment stromal cells including osteoblasts and osteoclasts, and effectively suppress both tumor and stromal compartments of bone metastasis.


Assuntos
Benzamidas/farmacologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Proteínas de Neoplasias , Osteoclastos/metabolismo , Osteoprotegerina/metabolismo , Piperazinas/farmacologia , Pirazóis/farmacologia , Ligante RANK/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Microambiente Tumoral/efeitos dos fármacos , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Osteoclastos/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Sci Rep ; 9(1): 6917, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061414

RESUMO

Precise mechanisms underlying interleukin-7 (IL-7)-mediated tumor invasion remain unclear. Thus, we investigated the role of IL-7 in tumor invasiveness using metastatic prostate cancer PC-3 cell line derivatives, and assessed the potential of IL-7 as a clinical target using a Janus kinase (JAK) inhibitor and an IL-7-blocking antibody. We found that IL-7 stimulated wound-healing migration and invasion of PC-3 cells, increased phosphorylation of signal transducer and activator of transcription 5, Akt, and extracellular signal-regulated kinase. On the other hand, a JAK inhibitor and an IL-7-blocking antibody decreased the invasiveness of PC-3 cells. IL-7 increased tumor sphere formation and expression of epithelial-mesenchymal transition (EMT) markers. Importantly, lentiviral delivery of IL-7Rα to PC-3 cells significantly increased bone metastasis in an experimental murine metastasis model compared to controls. The gene expression profile of human prostate cancer cells from The Cancer Genome Atlas revealed that EMT pathways are strongly associated with prostate cancers that highly express both IL-7 and IL-7Rα. Collectively, these data suggest that IL-7 and/or IL-7Rα are promising targets of inhibiting tumor metastasis.


Assuntos
Transição Epitelial-Mesenquimal , Interleucina-7/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Movimento Celular , Humanos , Masculino , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Células PC-3 , Receptores de Interleucina-7/metabolismo
14.
Int J Oral Maxillofac Implants ; 34(2): 390-396, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30883618

RESUMO

PURPOSE: The aim of this study was to evaluate the responses of human gingival fibroblast (HGF-1) in contact with provisional materials with various chemical compositions and fabricated using different methods. MATERIALS AND METHODS: A total of 210 specimens in eight experimental groups were used. Groups were divided by chemical compositions (poly[ethyl methacrylate], poly[methyl methacrylate], bis-acryl, and hybrid ceramic) and fabricating methods (direct, indirect, and computer-aided design/computer-aided manufacturing [CAD/CAM]). To evaluate the surface characteristics of each group, roughness, water contact angle, and degree of conversion were measured. The responses of HGF-1 to provisional materials were evaluated with cytotoxicity and cell attachment assay. The roughness, surface energy, degree of conversion, level of cytotoxicity, and cell attachment were compared between groups using one-way analysis of variance (ANOVA) and Tukey's multiple comparison (α = .05). RESULTS: The poly(ethyl methacrylate)-direct/indirect and poly(methyl methacrylate)-direct/indirect groups showed higher roughness than the bis-acryl-direct/indirect, poly(methyl methacrylate)-CAD/CAM, and hybrid ceramic-CAD/CAM groups with statistical significance (P < .05). The poly(ethyl methacrylate)-direct group showed the significantly highest water contact angle, and the hybrid ceramic-CAD/CAM group showed the lowest water contact angle (P < .05). The groups that used indirect fabrication methods showed a higher degree of conversion than those that used direct fabrication methods, regardless of chemical composition (P < .05). The poly(ethyl methacrylate) groups showed significantly lower cell viability than the other groups regardless of fabricating methods (P < .05). The poly(ethyl methacrylate)-direct method group showed the lowest cell attachment, and the hybrid ceramic-CAD/CAM method group showed the highest cell attachment (P < .05). CONCLUSION: Poly(methyl methacrylate) and bis-acryl have lower cytotoxicity to HGF-1 than poly(ethyl methacrylate). Indirect fabrication and CAD/CAM are recommended to prevent residual monomer and achieve high cell attachment. To use direct fabrication methods, the auto-mix system is beneficial for the favorable cell response, as it derives a smooth surface.


Assuntos
Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Materiais Dentários , Fibroblastos/efeitos dos fármacos , Análise de Variância , Cerâmica/farmacologia , Cerâmica/toxicidade , Desenho Assistido por Computador , Materiais Dentários/química , Materiais Dentários/toxicidade , Humanos , Teste de Materiais , Metilmetacrilatos/farmacologia , Metilmetacrilatos/toxicidade , Boca Edêntula/reabilitação , Polimetil Metacrilato/farmacologia , Polimetil Metacrilato/toxicidade , Propriedades de Superfície
15.
Int J Mol Sci ; 20(2)2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658428

RESUMO

Bone metastasis is the terminal stage disease of prostate, breast, renal, and lung cancers, and currently no therapeutic approach effectively cures or prevents its progression to bone metastasis. One of the hurdles to the development of new drugs for bone metastasis is the complexity and heterogeneity of the cellular components in the metastatic bone microenvironment. For example, bone cells, including osteoblasts, osteoclasts, and osteocytes, and the bone marrow cells of diverse hematopoietic lineages interact with each other via numerous cytokines and receptors. c-Met tyrosine kinase receptor and its sole ligand hepatocyte growth factor (HGF) are enriched in the bone microenvironment, and their expression correlates with the progression of bone metastasis. However, no drugs or antibodies targeting the c-Met/HGF signaling axis are currently available in bone metastatic patients. This significant discrepancy should be overcome by further investigation of the roles and regulation of c-Met and HGF in the metastatic bone microenvironment. This review paper summarizes the key findings of c-Met and HGF in the development of novel therapeutic approaches for bone metastasis.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Progressão da Doença , Humanos , Terapia de Alvo Molecular , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Microambiente Tumoral/efeitos dos fármacos
16.
FASEB J ; 33(2): 2422-2434, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30260700

RESUMO

The importance of proteostasis in preventing cellular senescence has been well recognized. However, the exact mechanism by which the loss of proteostasis or endoplasmic reticulum (ER) stress induces cellular senescence remains unclear. We report that ER stress mediates cellular senescence through the activating transcription factor (ATF)6α branch of the unfolded protein response (UPR). Cellular senescence was induced by the abrogation of neighbor of breast cancer (BRCA)1 gene (NBR1). NBR1 abrogation-induced senescence was p53 dependent and observed in both transformed and nontransformed human cell lines: MCF-7, Caki-1, and MRC-5. NBR1 bound to p38 MAPK, preferentially to an active form, and upon NBR1 abrogation, the activity of p38 increased. NADPH oxidase was activated in turn by p38, and the resulting oxidative stress triggered ER stress. It was found that ER stress mediated cellular senescence through the UPR sensor ATF6α. Knockdown of ATF6α prevented senescence, whereas ATF6α overexpression triggered it. The transcriptional activity of ATF6α was important. The ER stress-ATF6α axis also mediated cellular senescence induced by H-RasV12 overexpression and UV irradiation, suggesting a common role of this axis in senescence induction. In summary, we presented an evidence for the novel role of the ER stress-ATF6α axis in cellular senescence.-Kim, H. S., Kim, Y., Lim, M. J., Park, Y.-G., Park, S. I., Sohn, J. The p38-activated ER stress-ATF6α axis mediates cellular senescence.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Senescência Celular , Estresse do Retículo Endoplasmático , Proteínas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fator 6 Ativador da Transcrição/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células MCF-7 , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Proteínas/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética
17.
PLoS One ; 13(10): e0199998, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30286117

RESUMO

This study describes the successful synthesis of nitric oxide (NO)-releasing compounds with biodegradable and injectable properties and demonstrates that the kinetics of NO release vary according to the type of NO donor. The antimicrobial activity of NO-releasing compounds against three common periodontal pathogens, i.e., Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Actinomyces israelii, was investigated using a susceptibility assay. Human gingival fibroblasts were treated with NO-releasing compounds at the minimum concentrations required for bacterial growth and cytotoxicity was evaluated using the MTT cell proliferation assay. Our results suggest that NO-releasing compounds can be used topically to treat both gram-negative and gram-positive periodontal pathogens. Comparison of the antimicrobial activity and cytotoxicity assay results between the NO-releasing compounds revealed that an NO donor comprising a macromolecule without surface charge, a lower instantaneous NO concentration, and an adequate supply of NO were associated with a strong bactericidal effect and low cytotoxicity. NO-releasing compounds with these properties may be suitable for treatment of periodontitis.


Assuntos
Actinomyces/efeitos dos fármacos , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Antibacterianos/farmacologia , Óxido Nítrico/metabolismo , Doenças Periodontais/microbiologia , Porphyromonas gingivalis/efeitos dos fármacos , Linhagem Celular , Fibroblastos/metabolismo , Gengiva/citologia , Humanos , Cinética , Testes de Sensibilidade Microbiana
18.
Cancer Lett ; 414: 205-213, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29174801

RESUMO

Prostate cancer characteristically induces osteoblastic bone metastasis, for which no therapies are available. A dual kinase inhibitor of c-Met and VEGFR-2 (cabozantinib) was shown to reduce prostate cancer growth in bone, with evidence for suppressing osteoblastic activity. However, c-Met and VEGFR2 signaling in osteoblasts in the context of bone metastasis remain unclear. Here we show using cultured osteoblasts that hepatocyte growth factor (HGF) and VEGF-A increased receptor activator of NFκB ligand (RANKL) and M-CSF, two essential factors for osteoclastogenesis. Insulin-like growth factor-1 (IGF1) also increased RANKL and M-CSF via c-Met transactivation. The conditioned media from IGF1-, HGF-, or VEGFA-treated osteoblasts promoted osteoclastogenesis that was reversed by inhibiting c-Met and/or VEGFR2 in osteoblasts. In vivo experiments used cabozantinib-resistant prostate cancer cells (PC-3 and C4-2B) to test the effects of c-Met/VEGFR2 inhibition specifically in osteoblasts. Cabozantinib (60 mg/kg, 3 weeks) suppressed tumor growth in bone and reduced expression of RANKL and M-CSF and subsequent tumor-induced osteolysis. Collectively, inhibition of c-Met and VEGFR2 in osteoblasts reduced RANKL and M-CSF expression, and associated with reduction of tumor-induced osteolysis, suggesting that c-Met and VEGFR2 are promising therapeutic targets in bone metastasis.


Assuntos
Anilidas/farmacologia , Neoplasias Ósseas/metabolismo , Osteoblastos/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Piridinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Neoplasias Ósseas/prevenção & controle , Neoplasias Ósseas/secundário , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Masculino , Camundongos Nus , Osteoblastos/metabolismo , Osteólise/prevenção & controle , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Interferência de RNA , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Oncotarget ; 8(32): 53168-53179, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28881802

RESUMO

Bacillus Calmette-Guérin (BCG) is one of the standard treatment options for non-muscle-invasive bladder cancer. The details of the biological defense mechanisms against BCG remain unclear. Here, we investigated whether BCG-induced release of antimicrobial peptides (AMPs; e.g., human ß-defensin-2, -3, and cathelicidin) is involved with mitogen-activated protein kinase (MAPK) pathways, and investigated the enhanced anticancer effect of BCG through the down-regulation of Toll-like receptors (TLRs) and MAPK pathways in bladder cancer cells. BCG-infected bladder cancer cells produced AMPs as a defense mechanism against BCG, which were reduced by MEK inhibitors by blocking phosphorylation of extracellular signal-regulated kinase (ERK1/2 or MEK) and c-Jun. MEK inhibitors enhanced inhibition of bladder cancer cell growth by decreased binding of c-Jun, p65 and Pol II to the activated protein-1 promoter. Knockdown of TLR2 and TLR4 reduced ERK phosphorylation. Knockdown of TLR 2 decreased release of AMPs, which was similar to the efficacy of MEK inhibitor on BCG-infected cells. BCG-infected bladder cancer cells were more prone to induction of AMP release following TLR2 activation via ERK and c-Jun pathway mediators. In conclusion, our data suggest that the BCG-induced release of AMPs in bladder cancer cells is a promising molecular target for enhancing the immunotherapeutic efficacy of BCG in bladder cancer patients.

20.
Endocrinol Metab (Seoul) ; 31(4): 485-492, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28029019

RESUMO

The tumor microenvironment is comprised of diverse stromal cell populations in addition to tumor cells. Increasing evidence now clearly supports the role of microenvironment stromal cells in tumor progression and metastasis, yet the regulatory mechanisms and interactions among tumor and stromal cells remain to be elucidated. Bone metastasis is the major problem in many types of human malignancies including prostate, breast and lung cancers, and the biological basis of bone metastasis let alone curative approaches are largely undetermined. Among the many types of stromal cells in bone, osteoblasts are shown to be an important player. In this regard, osteoblasts are a key target cell type in the development of bone metastasis, but there are currently no drugs or therapeutic approaches are available that specifically target osteoblasts. This review paper summarizes the current knowledge on osteoblasts in the metastatic tumor microenvironment, aiming to provide clues and directions for future research endeavor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...