Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Korean J Physiol Pharmacol ; 28(1): 73-81, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38154966

RESUMO

The substantia gelatinosa (SG) within the trigeminal subnucleus caudalis (Vc) is recognized as a pivotal site of integrating and modulating afferent fibers carrying orofacial nociceptive information. Although naringenin (4',5,7-thrihydroxyflavanone), a natural bioflavonoid, has been proven to possess various biological effects in the central nervous system (CNS), the activity of naringenin at the orofacial nociceptive site has not been reported yet. In this study, we explored the influence of naringenin on GABA response in SG neurons of Vc using whole-cell patch-clamp technique. The application of GABA in a bath induced two forms of GABA responses: slow and fast. Naringenin enhanced both amplitude and area under curve (AUC) of GABA-mediated responses in 57% (12/21) of tested neurons while decreasing both parameters in 33% (7/21) of neurons. The enhancing or suppressing effect of naringenin on GABA response have been observed, with enhancement occurring when the GABA response was slow, and suppression when it was fast. Furthermore, both the enhancement of slower GABA responses and the suppression of faster GABA responses by naringenin were concentration dependent. Interestingly, the nature of GABA response was also found to be sex-dependent. A majority of SG neurons from juvenile female mice exhibited slower GABA responses, whereas those from juvenile males predominantly displayed faster GABA responses. Taken together, this study indicates that naringenin plays a partial role in modulating orofacial nociception and may hold promise as a therapeutic target for treating orofacial pain, with effects that vary according to sex.

2.
Neuroscience ; 521: 89-101, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37142181

RESUMO

Inhibitory neurotransmitters such as gamma-aminobutyric acid (GABA) and glycine are known to be abundant in the substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc). Thus, it has been recognized as an initial synaptic site for regulating orofacial nociceptive stimuli. Honokiol, a principal active ingredient derived from the bark of Magnolia officinalis, has been exploited in traditional remedies with multiple biological effects, including anti-nociception on humans. However, the anti-nociceptive mechanism of honokiol on SG neurons of the Vc remains fully elusive. In this study, effects of honokiol on SG neurons of the Vc in mice were investigated using the whole-cell patch-clamp method. In a concentration-dependent manner, honokiol significantly enhanced frequencies of spontaneous postsynaptic currents (sPSCs) that were independent of action potential generation. Notably, honokiol-induced increase in the frequency of sPSCs was attributed to the release of inhibitory neurotransmitters through both glycinergic and GABAergic pre-synaptic terminals. Furthermore, higher concentration of honokiol induced inward currents that were noticeably attenuated in the presence of picrotoxin (a GABAA receptor antagonist) or strychnine (a glycine receptor antagonist). Honokiol also exhibited potentiation effect on glycine- and GABAA receptor-mediated responses. In inflammatory pain model, the increase in frequency of spontaneous firing on SG neurons induced by formalin was significantly inhibited by the application of honokiol. Altogether, these findings indicate that honokiol might directly affect SG neurons of the Vc to facilitate glycinergic and GABAergic neurotransmissions and modulate nociceptive synaptic transmission against pain. Consequently, the inhibitory effect of honokiol in the central nociceptive system contributes to orofacial pain management.


Assuntos
Receptores de GABA-A , Substância Gelatinosa , Humanos , Animais , Camundongos , Neurônios , Transmissão Sináptica , Glicina , Neurotransmissores/farmacologia , Dor
3.
Nat Prod Res ; 36(22): 5788-5792, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35086401

RESUMO

Although a number of studies have reported that resveratrol has analgesic effects, the direct effect of resveratrol on substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) involved in orofacial nociceptive transmission has not been clearly examined. Thus, the objective of this study was to investigate effects of resveratrol on SG neurons of Vc in mice using a whole-cell patch-clamp technique. Resveratrol (500 µM) induced repeatable inward currents without desensitisation. Resveratrol-induced inward currents were shown in a concentration-dependent manner. Resveratrol-induced responses were sustained in the presence of tetrodotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and DL-2-Amino-5-phosphonovaleric acid (DL-AP5). However, resveratrol-induced inward currents were suppressed in the presence of picrotoxin and strychnine. These results indicate that resveratrol can directly act on SG neurons of Vc with possible inhibitory effects on SG neurons through activation of GABAA receptors and/or glycine receptors. Thus, resveratrol can be a potential therapeutic for orofacial pain modulation.


Assuntos
Receptores de Glicina , Substância Gelatinosa , Camundongos , Animais , Resveratrol/farmacologia , Neurônios , Ácido gama-Aminobutírico
4.
Am J Chin Med ; 49(6): 1437-1448, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34247560

RESUMO

Linalool, a major odorous constituent in essential oils extracted from lavender, is known to have a wide range of physiological effects on humans including pain management. The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is involved in transmission of orofacial nociceptive responses through thin myelinated A[Formula: see text] and unmyelinated C primary afferent fibers. Up to date, the orofacial antinociceptive mechanism of linalool concerning SG neurons of the Vc has not been completely clarified yet. To fill this knowledge gap, whole-cell patch-clamp technique was used in this study to examine how linalool acted on SG neurons of the Vc in mice. Under a high chloride pipette solution, non-desensitizing and repeatable linalool-induced inward currents were preserved in the presence of tetrodotoxin (a voltage-gated Na[Formula: see text]channel blocker), CNQX (a non-NMDA glutamate receptor antagonist), and DL-AP5 (an NMDA receptor antagonist). However, linalool-induced inward currents were partially suppressed by picrotoxin (a GABA[Formula: see text] receptor antagonist) or strychnine (a glycine receptor antagonist). These responses were almost blocked in the presence of picrotoxin and strychnine. It was also found that linalool exhibited potentiation with GABA- and glycine-induced responses. Taken together, these data show that linalool has GABA- and glycine-mimetic effects, suggesting that it can be a promising target molecule for orofacial pain management by activating inhibitory neurotransmission in the SG area of the Vc.


Assuntos
Monoterpenos Acíclicos/farmacologia , Glicina/metabolismo , Manejo da Dor/métodos , Substância Gelatinosa/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos
5.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918982

RESUMO

Lithium (Li+) salt is widely used as a therapeutic agent for treating neurological and psychiatric disorders. Despite its therapeutic effects on neurological and psychiatric disorders, it can also disturb the neuroendocrine axis in patients under lithium therapy. The hypothalamic area contains GABAergic and glutamatergic neurons and their receptors, which regulate various hypothalamic functions such as the release of neurohormones, control circadian activities. At the neuronal level, several neurotransmitter systems are modulated by lithium exposure. However, the effect of Li+ on hypothalamic neuron excitability and the precise action mechanism involved in such an effect have not been fully understood yet. Therefore, Li+ action on hypothalamic neurons was investigated using a whole-cell patch-clamp technique. In hypothalamic neurons, Li+ increased the GABAergic synaptic activities via action potential independent presynaptic mechanisms. Next, concentration-dependent replacement of Na+ by Li+ in artificial cerebrospinal fluid increased frequencies of GABAergic miniature inhibitory postsynaptic currents without altering their amplitudes. Li+ perfusion induced inward currents in the majority of hypothalamic neurons independent of amino-acids receptor activation. These results suggests that Li+ treatment can directly affect the hypothalamic region of the brain and regulate the release of various neurohormones involved in synchronizing the neuroendocrine axis.


Assuntos
Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Lítio/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Animais , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Técnicas de Patch-Clamp , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/metabolismo , Receptores de Aminoácido/metabolismo , Transmissão Sináptica/efeitos dos fármacos
6.
Korean J Physiol Pharmacol ; 24(5): 433-440, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830150

RESUMO

The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is the first relay site for the orofacial nociceptive inputs via the thin myelinated Aδ and unmyelinated C primary afferent fibers. Borneol, one of the valuable timehonored herbal ingredients in traditional Chinese medicine, is a popular treatment for anxiety, anesthesia, and antinociception. However, to date, little is known as to how borneol acts on the SG neurons of the Vc. To close this gap, the whole-cell patch-clamp technique was applied to elucidate the antinociceptive mechanism responding for the actions of borneol on the SG neurons of the Vc in mice. In the voltage-clamp mode, holding at -60 mV, the borneol-induced non-desensitizing inward currents were not affected by tetrodotoxin, a voltage-gated Na+ channel blocker, 6-cyano-7-nitro-quinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist and DL-2-amino-5-phosphonopentanoic acid, an NMDA receptor antagonist. However, borneol-induced inward currents were partially decreased in the presence of picrotoxin, a γ-aminobutyric acid (GABA)A receptor antagonist, or strychnine, a glycine receptor antagonist, and was almost suppressed in the presence of picrotoxin and strychnine. Though borneol did not show any effect on the glycine-induced inward currents, borneol enhanced GABA-mediated responses. Beside, borneol enhanced the GABA-induced hyperpolarization under the current-clamp mode. Altogether, we suggest that borneol contributes in part toward mediating the inhibitory GABA and glycine transmission on the SG neurons of the Vc and may serve as an herbal therapeutic for orofacial pain ailments.

7.
Chem Res Toxicol ; 33(3): 782-788, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31997638

RESUMO

Lamina II, also called the substantia gelatinosa (SG) of the medullary dorsal horn (the trigeminal subnucleus caudalis, Vc), is thought to play an essential role in the control of orofacial nociception because it receives the nociceptive signals from primary afferents, including thin myelinated Aδ- and unmyelinated C-fibers. Glycine, the main inhibitory neurotransmitter in the central nervous system, plays an essential role in the transference of nociceptive messages from the periphery to higher brain regions. Bisphenol A (BPA) is reported to alter the morphological and functional characteristics of neuronal cells and to be an effector of a great number of ion channels in the central nervous system. However, the electrophysiological effects of BPA on the glycine receptors of SG neurons in the Vc have not been well studied. Therefore, in this study, we used the whole-cell patch-clamp technique to determine the effect of BPA on the glycine response in SG neurons of the Vc in male mice. We demonstrated that in early neonatal mice (0-3 postnatal day mice), BPA did not affect the glycine-induced inward current. However, in the juvenile and adult groups, BPA enhanced the glycine-mediated responses. Heteromeric glycine receptors were involved in the modulation by BPA. The interaction between BPA and glycine appears to have a significant role in regulating transmission in the nociceptive pathway.


Assuntos
Compostos Benzidrílicos/farmacologia , Disruptores Endócrinos/farmacologia , Glicina/farmacologia , Neurônios/efeitos dos fármacos , Fenóis/farmacologia , Substância Gelatinosa/efeitos dos fármacos , Núcleos do Trigêmeo/efeitos dos fármacos , Animais , Compostos Benzidrílicos/química , Relação Dose-Resposta a Droga , Disruptores Endócrinos/química , Glicina/química , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neurônios/metabolismo , Técnicas de Patch-Clamp , Fenóis/química , Receptores de Glicina/metabolismo , Substância Gelatinosa/metabolismo , Núcleos do Trigêmeo/metabolismo
8.
Chin J Physiol ; 62(5): 175-181, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31670280

RESUMO

The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is admitted as a pivotal site of integrating and regulating orofacial nociceptive inputs. Although citral (3,7-dimethyl-2,6-octadienal) is involved in antinociception, the action mechanism of citral on the SG neurons of the Vc has not been fully clarified yet. In this study, we examined the direct membrane effects of citral and how citral mediates responses on the SG neurons of the Vc in juvenile mice using a whole-cell patch-clamp technique. Under high chloride pipette solution, citral showed repeatable inward currents that persisted in the presence of tetrodotoxin, a voltage-gated Na+ channel blocker, and 6-cyano-7-nitro-quinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, D-2-amino-5-phosphonopentanoic acid, an NMDA receptor antagonist. However, the citral-induced inward currents were partially blocked by picrotoxin, a gamma-aminobutyric acid (GABAA)-receptor antagonist, or by strychnine, a glycine receptor antagonist. Further, the citral-induced responses were almost blocked by picrotoxin with strychnine. We also found that citral exhibited additive effect with GABA-induced inward currents and glycine-induced inward currents were potentiated by citral. In addition, citral suppressed the firing activities by positive current injection on the SG neurons of the Vc. Taken together, these results demonstrate that citral has glycine- and/or GABA-mimetic actions and suggest that citral might be a potential target for orofacial pain modulation by the activation of inhibitory neurotransmission in the SG area of the Vc.


Assuntos
Substância Gelatinosa , Monoterpenos Acíclicos , Animais , Camundongos , Monoterpenos , Neurônios , Técnicas de Patch-Clamp , Ratos Sprague-Dawley
9.
Korean J Physiol Pharmacol ; 23(4): 271-279, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31297011

RESUMO

The lamina II, also called the substantia gelatinosa (SG), of the trigeminal subnucleus caudalis (Vc), is thought to play an essential role in the control of orofacial nociception. Glycine and serotonin (5-hydroxytryptamine, 5-HT) are the important neurotransmitters that have the individual parts on the modulation of nociceptive transmission. However, the electrophysiological effects of 5-HT on the glycine receptors on SG neurons of the Vc have not been well studied yet. For this reason, we applied the whole-cell patch clamp technique to explore the interaction of intracellular signal transduction between 5-HT and the glycine receptors on SG neurons of the Vc in mice. In nine of 13 neurons tested (69.2%), pretreatment with 5-HT potentiated glycine-induced current (IGly). Firstly, we examined with a 5-HT1 receptor agonist (8-OH-DPAT, 5-HT1/7 agonist, co-applied with SB-269970, 5-HT7 antagonist) and antagonist (WAY-100635), but 5-HT1 receptor agonist did not increase IGly and in the presence of 5-HT1 antagonist, the potentiation of 5-HT on IGly still happened. However, an agonist (α-methyl-5-HT) and antagonist (ketanserin) of the 5-HT2 receptor mimicked and inhibited the enhancing effect of 5-HT on IGly in the SG neurons, respectively. We also verified the role of the 5-HT7 receptor by using a 5-HT7 antagonist (SB-269970) but it also did not block the enhancement of 5-HT on IGly. Our study demonstrated that 5-HT facilitated IGly in the SG neurons of the Vc through the 5-HT2 receptor. The interaction between 5-HT and glycine appears to have a significant role in modulating the transmission of the nociceptive pathway.

10.
Korean J Physiol Pharmacol ; 22(5): 539-546, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30181700

RESUMO

Botulinum toxin type A (BoNT/A) has been used therapeutically for various conditions including dystonia, cerebral palsy, wrinkle, hyperhidrosis and pain control. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) receive orofacial nociceptive information from primary afferents and transmit the information to higher brain center. Although many studies have shown the analgesic effects of BoNT/A, the effects of BoNT/A at the central nervous system and the action mechanism are not well understood. Therefore, the effects of BoNT/A on the spontaneous postsynaptic currents (sPSCs) in the SG neurons were investigated. In whole cell voltage clamp mode, the frequency of sPSCs was increased in 18 (37.5%) neurons, decreased in 5 (10.4%) neurons and not affected in 25 (52.1%) of 48 neurons tested by BoNT/A (3 nM). Similar proportions of frequency variation of sPSCs were observed in 1 and 10 nM BoNT/A and no significant differences were observed in the relative mean frequencies of sPSCs among 1-10 nM BoNT/A. BoNT/A-induced frequency increase of sPSCs was not affected by pretreated tetrodotoxin (0.5 µM). In addition, the frequency of sIPSCs in the presence of CNQX (10 µM) and AP5 (20 µM) was increased in 10 (53%) neurons, decreased in 1 (5%) neuron and not affected in 8 (42%) of 19 neurons tested by BoNT/A (3 nM). These results demonstrate that BoNT/A increases the frequency of sIPSCs on SG neurons of the Vc at least partly and can provide an evidence for rapid action of BoNT/A at the central nervous system.

11.
J Vet Sci ; 19(2): 172-178, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-29169227

RESUMO

It has been reported that Korean red ginseng (KRG), a valuable and important traditional medicine, has varied effects on the central nervous system, suggesting its activities are complicated. The paraventricular nucleus (PVN) neurons of the hypothalamus has a critical role in stress responses and hormone secretions. Although the action mechanisms of KRG on various cells and systems have been reported, the direct membrane effects of KRG on PVN neurons have not been fully described. In this study, the direct membrane effects of KRG on PVN neuronal activity were investigated by using a perforated patch-clamp in ICR mice. In gramicidin perforated patch-clamp mode, KRG extract (KRGE) induced repeatable depolarization followed by hyperpolarization of PVN neurons. The KRGE-induced responses were concentration- dependent and persisted in the presence of tetrodotoxin, a voltage sensitive Na+ channel blocker. The KRGE-induced responses were suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione (10 µM), a non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, but not by picrotoxin, a type A gamma-aminobutyric acid receptor antagonist. The results indicate that KRG activates non-NMDA glutamate receptors of PVN neurons in mice, suggesting that KRG may be a candidate for use in regulation of stress responses by controlling autonomic nervous system and hormone secretion.


Assuntos
Panax , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Relação Dose-Resposta a Droga , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Núcleo Hipotalâmico Paraventricular/citologia , Técnicas de Patch-Clamp , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos
12.
Arch Oral Biol ; 76: 48-54, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28119170

RESUMO

OBJECTIVE: Potassium channels of the ATP-sensitive family (KATP channel) are inhibited by increase in intracellular ATP. Electrophysiological studies have demonstrated that the kinetics and pharmacological properties of KATP channels vary among different tissues, suggesting structurally and functionally distinct types. There are studies showing human periodontal ligament (PDL) cells respond to mechanical stress by increasing ATP release, which participates in bone resorption or bone homeostasis. So, in this study we investigated the existence of KATP channel subunit and their single channel properties in human periodontal ligaments. MATERIALS & METHOD: The human PDL cells were isolated from healthy erupted third molar. For patch-clamp experiments, human PDL fibroblasts were seeded on 3.5cm plastic dishes. The inside-out patch clamp recordings were performed under voltage clamp mode. Reverse transcriptase polymerase chain reaction (RT-PCR) was conducted to identify the channel subunits. All pair-wise comparisons were performed by Paired t-test. A P value <0.05 was considered significant. RESULTS: We observed mRNA transcripts for Kir6.1, Kir6.2 and Sur2B subuits in the human PDL cells. In inside-out patch mode, the single channel conductance was 163pS at symmetrical K+ concentration of 140mM and inward rectification was seen in ATP-free bath solution. The reversal potential of the currents was found to be 0mV at symmetrical concentration (140mM) of K+ in bath solution. The single channel currents were almost blocked by adding 5mM ATP in the bath solution. However, the currents were not blocked by 100µM glibenclamide, a subunit specific KATP channel blocker. CONCLUSIONS: These results indicate that human PDL cells express KATP channels subunit including Sur2B and Kir6.1 and Kir6.2 which are sensitive to ATP but insensitive to glibenclamide.


Assuntos
Trifosfato de Adenosina/farmacologia , Ligamento Periodontal/citologia , Canais de Potássio/metabolismo , Glibureto/farmacologia , Humanos , Dente Serotino , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Amino Acids ; 48(12): 2843-2853, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27573934

RESUMO

To understand the action and mechanism of hypotaurine, an immediate precursor of taurine, on orofacial nociceptive processing, we examined the direct effects and receptor types involved in hypotaurine-induced responses using the whole-cell patch clamp technique in the substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) of immature mice. Under the condition of high-chloride pipette solution, hypotaurine elicited inward currents or upward deflections of membrane potential, which increased in a concentration-dependent manner (30-3000 µM) with the EC50 of 663.8 and 337.6 µM, respectively. The responses to 300 µM hypotaurine were reproducible and recovered upon washout. The 300 µM hypotaurine-induced currents were maintained in the presence of TTX, CNQX, and AP5, indicating direct postsynaptic action of hypotaurine on SG neurons. Responses to both low (300 µM) and high (1 or 3 mM) concentrations of hypotaurine were completely and reversibly blocked by the glycine receptor antagonist strychnine (2 µM), but unaffected by the GABAA receptor antagonist gabazine (3 µM) which blocks synaptic GABAA receptors at low concentration. Furthermore, responses to 300 µM hypotaurine and a maximal concentration of glycine (3 mM) were not additive, indicating that hypotaurine and glycine act on the same receptor. Hypotaurine-induced currents were partially antagonized by picrotoxin (50 µM) which blocks homomeric glycine receptors and by bicuculline (10 µM) which is an antagonist of α2 subunit-containing glycine receptors. These results suggest that hypotaurine-induced responses were mediated by glycine receptor activation in the SG neurons and hypotaurine might be used as an effective therapeutics for orofacial pain.


Assuntos
Neurônios/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Taurina/análogos & derivados , Núcleos do Trigêmeo/efeitos dos fármacos , Animais , Antagonistas de Receptores de GABA-A/administração & dosagem , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Piridazinas/administração & dosagem , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Receptores de Glicina/antagonistas & inibidores , Receptores de Glicina/genética , Estricnina/administração & dosagem , Substância Gelatinosa/efeitos dos fármacos , Substância Gelatinosa/metabolismo , Substância Gelatinosa/patologia , Potenciais Sinápticos/genética , Taurina/administração & dosagem , Núcleos do Trigêmeo/metabolismo
14.
Am J Chin Med ; 44(2): 389-400, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27080947

RESUMO

The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) receives nociceptive afferent inputs from thin-myelinated A[Formula: see text] fibers and unmyelinated C fibers and has been shown to be involved in the processing of orofacial nociceptive information. Scutellaria baicalensis Georgi (Huang-Qin, SbG), one of the 50 fundamental herbs of Chinese herbology, has been used historically as anti-inflammatory and antineoplastic medicine. Baicalin, one of the major compounds of SbG, has been reported to have neuroprotective, anti-inflammatory and analgesic effects. However, the receptor type activated by baicalin and its precise action mechanism on the SG neurons of Vc have not yet been studied. The whole-cell patch clamp technique was performed to examine the ion channels activated by baicalin on the SG neurons of Vc. In high Cl[Formula: see text] pipette solution, the baicalin (300[Formula: see text][Formula: see text]M) induced repeatable inward currents ([Formula: see text][Formula: see text]pA, [Formula: see text]) without desensitization on all the SG neurons tested. Further, the inward currents showed a concentration (0.1-3[Formula: see text]mM) dependent pattern. The inward current was sustained in the presence of tetrodotoxin (0.5[Formula: see text][Formula: see text]M), a voltage sensitive Na[Formula: see text] channel blocker. In addition, baicalin-induced inward currents were reduced in the presence of picrotoxin (50[Formula: see text][Formula: see text]M), a GABAA receptor antagonist, flumazenil (100[Formula: see text][Formula: see text]M), a benzodiazepine-sensitive GABAA receptor antagonist, and strychnine (2[Formula: see text][Formula: see text]M), a glycine receptor antagonist, respectively. These results indicate that baicalin has inhibitory effects on the SG neurons of the Vc, which are due to the activation of GABAA and/or the glycine receptor. Our results suggest that baicalin may be a potential target for orofacial pain modulation.


Assuntos
Flavonoides/farmacologia , Neurônios/metabolismo , Receptores de GABA/metabolismo , Receptores de Glicina/metabolismo , Substância Gelatinosa/citologia , Núcleo Inferior Caudal do Nervo Trigêmeo/citologia , Envelhecimento , Animais , Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Relação Dose-Resposta a Droga , Dor Facial/tratamento farmacológico , Feminino , Flavonoides/isolamento & purificação , Flavonoides/uso terapêutico , Masculino , Camundongos , Fármacos Neuroprotetores , Fitoterapia , Scutellaria baicalensis/química
15.
Neurosci Lett ; 608: 51-6, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26453764

RESUMO

Taurine is an essential amino-sulfonic acid having a fundamental function in the brain, participating in both cell volume regulation and neurotransmission. Using a whole cell voltage patch clamp technique, the taurine-activated neurotransmitter receptors in the preoptic hypothalamic area (PHA) neurons were investigated. In the first set of experiments, different concentrations of taurine were applied on PHA neurons. Taurine-induced responses were concentration-dependent. Taurine-induced currents were action potential-independent and sensitive to strychnine, suggesting the involvement of glycine receptors. In addition, taurine activated not only α-homomeric, but also αß-heteromeric glycine receptors in PHA neurons. Interestingly, a low concentration of taurine (0.5mM) activated glycine receptors, whereas a higher concentration (3mM) activated both glycine and gamma-aminobutyric acid A (GABAA) receptors in PHA neurons. These results suggest that PHA neurons are influenced by taurine and respond via glycine and GABAA receptors.


Assuntos
Neurônios/efeitos dos fármacos , Área Pré-Óptica/efeitos dos fármacos , Receptores de Glicina/metabolismo , Sinapses/efeitos dos fármacos , Taurina/farmacologia , Potenciais de Ação , Animais , Bicuculina/farmacologia , Relação Dose-Resposta a Droga , Antagonistas de Receptores de GABA-A/farmacologia , Glicinérgicos/farmacologia , Técnicas In Vitro , Camundongos , Neurônios/metabolismo , Picrotoxina/farmacologia , Área Pré-Óptica/citologia , Área Pré-Óptica/metabolismo , Piridazinas/farmacologia , Estricnina/farmacologia , Sinapses/metabolismo , Taurina/metabolismo
16.
J Diabetes Complications ; 29(5): 629-36, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25891974

RESUMO

Peripheral neuropathy is a frequent complication of diabetes mellitus and a common symptom of neuropathic pain, the mechanism of which is complex and involves both peripheral and central components of the sensory system. The lamina II of the medullary dorsal horn, called the substantia gelatinosa (SG), is well known to be a critical site for processing of orofacial nociceptive information. Although there have been a number of studies done on diabetic neuropathy related to the orofacial region, the action of neurotransmitter receptors on SG neurons in the diabetic state is not yet fully understood. Therefore, we used the whole-cell patch clamp technique to investigate this alteration on SG neurons in both streptozotocin (STZ)-induced diabetic mice and offspring from diabetic female mice. STZ (200 mg/kg)-injected mice showed a small decrease in body weight and a significant increase in blood glucose level when compared with their respective control group. However, application of different concentrations of glycine, gamma-aminobutyric acid (GABA) and glutamate on SG neurons from STZ-injected mice did not induce any significant differences in inward currents when compared to their control counterparts. On the other hand, the offspring of diabetic female mice (induced by multiple injections of STZ (40 mg/kg) for 5 consecutive days) led to a significant decrease in both body weight and blood glucose level compared to the control offspring. Glycine and glutamate responses in the SG neurons of the offspring from diabetic female mice were similar to those of control offspring. However, the GABA response in SG neurons of offspring from diabetic female mice was greater than that of control offspring. Furthermore, the GABA-mediated responses in offspring from diabetic and control mice were examined at different concentrations ranging from 3 to 1,000 µM. At each concentration, the GABA-induced mean inward currents in the SG neurons of offspring from diabetic female mice were larger than those of control mice. These results demonstrate that SG neurons in offspring from diabetic mice are more sensitive to GABA compared to control mice, suggesting that GABA sensitivity may alter orofacial pain processing in offspring from diabetic female mice.


Assuntos
Diabetes Gestacional/fisiopatologia , Neuropatias Diabéticas/metabolismo , Doenças do Nervo Facial/etiologia , Transtornos do Crescimento/etiologia , Substância Gelatinosa/metabolismo , Regulação para Cima , Ácido gama-Aminobutírico/metabolismo , Animais , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/fisiopatologia , Doenças do Nervo Facial/metabolismo , Doenças do Nervo Facial/fisiopatologia , Dor Facial/complicações , Dor Facial/etiologia , Feminino , Desenvolvimento Fetal , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/fisiopatologia , Masculino , Camundongos Endogâmicos ICR , Gravidez , Gravidez em Diabéticas/fisiopatologia , Estreptozocina , Transmissão Sináptica , Núcleo Inferior Caudal do Nervo Trigêmeo/metabolismo
17.
Brain Res ; 1543: 73-82, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24516875

RESUMO

The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc; medullary dorsal horn) receives and processes orofacial nociceptive inputs, and serotonergic fibers involved in the descending modulation of nociception are more densely distributed in the superficial laminae of the Vc. This study investigated the direct effects of 5-HT(1A/7) receptor agonist 8-OH-DPAT on SG neurons of the Vc to assess functional expression of the 5-HT7 receptor using gramicidin-perforated patch-clamp in postnatal day (PND) 5-84 male mice. Of the 70 SG neurons tested, bath application of 8-OH-DPAT (30 µM) induced depolarization (n=33), hyperpolarization (n=16) or no response (n=21). In another 10 SG neurons, 8-OH-DPAT in the presence of 5-HT(1A) receptor antagonist WAY-100635 (1 µM) elicited either depolarization (n=6) or no response (n=4); hyperpolarization was not observed. The 8-OH-DPAT-induced depolarization was significantly blocked by the selective 5-HT7 receptor antagonist SB-269970 (10 µM; n=8), but not by WAY-100635 (1 µM; n=5). The depolarizing effect of 8-OH-DPAT was maintained in the presence of TTX, CNQX, AP5, picrotoxin, and strychnine, indicating direct postsynaptic action of 8-OH-DPAT on SG neurons (n=6). 5-HT7 receptor mRNA was also detected in five of 21 SG neurons by single-cell RT-PCR. The mean amplitude of 8-OH-DPAT-induced depolarization in PND 5-21 mice (n=21) was significantly larger than that in PND 22-84 mice (n=12), although the proportion of SG neurons responding to 8-OH-DPAT by depolarization did not differ significantly between two age groups of mice. These results indicate that 5-HT7 receptors are functionally expressed in a subpopulation of SG neurons of the Vc and activation of 5-HT7 receptors plays an important role in modulating orofacial nociceptive processing in the SG neurons of the Vc.


Assuntos
Neurônios/metabolismo , Receptores de Serotonina/metabolismo , Substância Gelatinosa/citologia , Núcleos do Trigêmeo/citologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos , Interações Medicamentosas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Camundongos , Neurônios/efeitos dos fármacos , Fenóis/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Receptores de Serotonina/genética , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Sulfonamidas/farmacologia
18.
Am J Chin Med ; 41(5): 1043-51, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24117067

RESUMO

The plant Withania somnifera (WS), also known as Ashwagandha, has been used widely in traditional medicine systems in India and Nepal (Ayurveda), and has been accepted to cure various ailments. In this study, the whole-cell patch clamp technique was performed to examine the mechanism of action of WS on the SG neurons of the Vc from mouse brainstem slices. In whole-cell patch clamp mode, methanol extract of Withania somnifera (mWS) induced short-lived and repeatable inward currents in all SG neurons tested (31.3 ± 8.51 pA, n = 7) using a high chloride pipette solution. The mWS-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated Na (+) channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, AP5, an NMDA receptor antagonist and strychnine, a glycine receptor antagonist. The mWS induced currents were blocked by picrotoxin, a GABAA receptor antagonist. These results show that mWS has an inhibitory effects on SG neurons of the Vc through GABAA receptor-mediated activation of chloride ion channels, indicating that mWS contains compounds with sedative effects on the central nervous system. These results also suggest that mWS may be a potential target for modulating orofacial pain processing.


Assuntos
Fenômenos Eletrofisiológicos/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/fisiologia , Extratos Vegetais/antagonistas & inibidores , Extratos Vegetais/farmacologia , Substância Gelatinosa/citologia , Núcleos do Trigêmeo/citologia , Withania , Ácido gama-Aminobutírico , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Células Cultivadas , Canais de Cloreto/metabolismo , Relação Dose-Resposta a Droga , Dor Facial/tratamento farmacológico , Dor Facial/genética , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Masculino , Camundongos , Técnicas de Patch-Clamp/métodos , Fitoterapia , Picrotoxina/farmacologia , Extratos Vegetais/uso terapêutico , Receptores de GABA-A/fisiologia , Estricnina/farmacologia , Tetrodotoxina/farmacologia
19.
Am J Chin Med ; 41(3): 503-13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23711138

RESUMO

In Ayurveda,Withania somnifera (WS) is used as a medicine to maintain mental and physical health as well as to enhance memory. In this study, the methanolic extract of WS(mWS) was tested for its electrical influence on hippocampal CA1 pyramidal neurons using a patch clamp technique. In current clamp mode under a high chloride pipette solution, mWS (400 ng/µl) induced remarkable membrane depolarization (9.75 ± 2.54 mV, n = 6) of CA1 neurons. The mWS-induced depolarization was dose-dependent, reproducible, and persistent in the presence of 0.5 µM tetrodotoxin (TTX, 10.17 ± 0.04 mV, n = 6). In voltage clamp mode (holding potential = -60 mV), mWS induced a dose-dependent non-desensitizing inward current that persisted in the presence of TTX (0.5 µM), suggesting that the response induced by mWS was purely a postsynaptic event. Interestingly, these inward currents were partially blocked by strychnine, a glycine receptor blocker. Further, mWS potentiated the NMDA response in hippocampal CA1 neurons at low concentrations. Overall, these results suggest that there are compounds in WS with possible glycine mimetic activities, which may be potential targets for inducing memory consolidation in hippocampal CA1 neurons.


Assuntos
Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , N-Metilaspartato/metabolismo , Extratos Vegetais/farmacologia , Células Piramidais/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Withania , Animais , Relação Dose-Resposta a Droga , Feminino , Glicinérgicos/farmacologia , Hipocampo/citologia , Masculino , Memória/efeitos dos fármacos , Camundongos , Receptores de Glicina/antagonistas & inibidores , Estricnina/farmacologia , Sinapses/efeitos dos fármacos , Tetrodotoxina
20.
Neural Plast ; 2013: 740581, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24379976

RESUMO

The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) has been known for the processing and transmission of orofacial nociceptive information. Taurine, one of the most plentiful free amino-acids in humans, has proved to be involved in pain modulation. In this study, using whole-cell patch clamp technique, we investigated the direct membrane effects of taurine and the action mechanism behind taurine-mediated responses on the SG neurons of the Vc. Taurine showed non-desensitizing and repeatable membrane depolarizations and inward currents which remained in the presence of amino-acid receptors blocking cocktail (AARBC) with tetrodotoxin, indicating that taurine acts directly on the postsynaptic SG neurons. Further, application of taurine at different doses (10 µM to 3 mM) showed a concentration dependent depolarizations and inward currents with the EC50 of 84.3 µM and 723 µM, respectively. Taurine-mediated responses were partially blocked by picrotoxin (50 µM) and almost completely blocked by strychnine (2 µM), suggesting that taurine-mediated responses are via glycine receptor (GlyR) activation. In addition, taurine (1 mM) activated extrasynaptic GABA(A) receptor (GABA(A)R)-mediated currents. Taken together, our results indicate that taurine can be a target molecule for orofacial pain modulation through the activation of GlyRs and/or extrasynaptic GABA(A)Rs on the SG neurons.


Assuntos
Agonistas GABAérgicos , Neurônios/efeitos dos fármacos , Receptores de GABA-A/efeitos dos fármacos , Receptores de Glicina/agonistas , Substância Gelatinosa/citologia , Substância Gelatinosa/efeitos dos fármacos , Taurina/farmacologia , Núcleos do Trigêmeo/efeitos dos fármacos , Animais , Interpretação Estatística de Dados , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Antagonistas GABAérgicos/farmacologia , Glicinérgicos/farmacologia , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Estricnina/farmacologia , Taurina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...