Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 11(6): uhae126, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919555

RESUMO

Stem cell homeostasis is pivotal for continuous and programmed formation of organs in plants. The precise control of meristem proliferation is mediated by the evolutionarily conserved signaling that encompasses complex interactions among multiple peptide ligands and their receptor-like kinases. Here, we identified compensation mechanisms involving the CLAVATA1 (CLV1) receptor and its paralogs, BARELY ANY MERISTEMs (BAMs), for stem cell proliferation in two Solanaceae species, tomato and groundcherry. Genetic analyses of higher-order mutants deficient in multiple receptor genes, generated via CRISPR-Cas9 genome editing, reveal that tomato SlBAM1 and SlBAM2 compensate for slclv1 mutations. Unlike the compensatory responses between orthologous receptors observed in Arabidopsis, tomato slclv1 mutations do not trigger transcriptional upregulation of four SlBAM genes. The compensation mechanisms within receptors are also conserved in groundcherry, and critical amino acid residues of the receptors associated with the physical interaction with peptide ligands are highly conserved in Solanaceae plants. Our findings demonstrate that the evolutionary conservation of both compensation mechanisms and critical coding sequences between receptor-like kinases provides a strong buffering capacity during stem cell homeostasis in tomato and groundcherry.

2.
Sci Rep ; 14(1): 8015, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580719

RESUMO

Plant-specific transcription factors (TFs) are responsible for regulating the genes involved in the development of plant-specific organs and response systems for adaptation to terrestrial environments. This includes the development of efficient water transport systems, efficient reproductive organs, and the ability to withstand the effects of terrestrial factors, such as UV radiation, temperature fluctuations, and soil-related stress factors, and evolutionary advantages over land predators. In rice and Arabidopsis, INDETERMINATE DOMAIN (IDD) TFs are plant-specific TFs with crucial functions, such as development, reproduction, and stress response. However, in tomatoes, IDD TFs remain uncharacterized. Here, we examined the presence, distribution, structure, characteristics, and expression patterns of SlIDDs. Database searches, multiple alignments, and motif alignments suggested that 24 TFs were related to Arabidopsis IDDs. 18 IDDs had two characteristic C2H2 domains and two C2HC domains in their coding regions. Expression analyses suggest that some IDDs exhibit multi-stress responsive properties and can respond to specific stress conditions, while others can respond to multiple stress conditions in shoots and roots, either in a tissue-specific or universal manner. Moreover, co-expression database analyses suggested potential interaction partners within IDD family and other proteins. This study functionally characterized SlIDDs, which can be studied using molecular and bioinformatics methods for crop improvement.


Assuntos
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
4.
Nat Genet ; 55(9): 1579-1588, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37640880

RESUMO

Potato (Solanum tuberosum) and tomato (Solanum lycopersicon) crops suffer severe losses to late blight caused by the oomycete pathogen Phytophthora infestans. Solanum americanum, a relative of potato and tomato, is globally distributed and most accessions are highly blight resistant. We generated high-quality reference genomes of four S. americanum accessions, resequenced 52 accessions, and defined a pan-NLRome of S. americanum immune receptor genes. We further screened for variation in recognition of 315P. infestans RXLR effectors in 52 S. americanum accessions. Using these genomic and phenotypic data, we cloned three NLR-encoding genes, Rpi-amr4, R02860 and R04373, that recognize cognate P. infestans RXLR effectors PITG_22825 (AVRamr4), PITG_02860 and PITG_04373. These genomic resources and methodologies will support efforts to engineer potatoes with durable late blight resistance and can be applied to diseases of other crops.


Assuntos
Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Solanum , Solanum/genética , Solanum tuberosum/genética , Phytophthora infestans/genética , Solanum lycopersicum/genética , Genômica , Produtos Agrícolas
5.
Plant Biotechnol J ; 21(12): 2458-2472, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37530518

RESUMO

Numerous staple crops exhibit polyploidy and are difficult to genetically modify. However, recent advances in genome sequencing and editing have enabled polyploid genome engineering. The hexaploid black nightshade species Solanum nigrum has immense potential as a beneficial food supplement. We assembled its genome at the scaffold level. After functional annotations, we identified homoeologous gene sets, with similar sequence and expression profiles, based on comparative analyses of orthologous genes with close diploid relatives Solanum americanum and S. lycopersicum. Using CRISPR-Cas9-mediated mutagenesis, we generated various mutation combinations in homoeologous genes. Multiple mutants showed quantitative phenotypic changes based on the genotype, resulting in a broad-spectrum effect on the quantitative traits of hexaploid S. nigrum. Furthermore, we successfully improved the fruit productivity of Boranong, an orphan cultivar of S. nigrum suggesting that engineering homoeologous genes could be useful for agricultural improvement of polyploid crops.


Assuntos
Produtos Agrícolas , Poliploidia , Sequência de Bases , Mapeamento Cromossômico/métodos , Mutação , Fenótipo , Produtos Agrícolas/genética , Genoma de Planta/genética , Edição de Genes
6.
AMB Express ; 13(1): 9, 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36680648

RESUMO

Endophytes can facilitate the improvement of plant growth and health in agriculturally important crops, yet their genomes and secondary metabolites remain largely unexplored. We previously isolated Saccharibacillus brassicae strain ATSA2T from surface-sterilized seeds of kimchi cabbage and represented a novel species of the genus Saccharibacillus. In this study, we evaluated the plant growth-promoting (PGP) effect of strain ATSA2T in kimchi cabbage, bok choy, and pepper plants grown in soils. We found a significant effect on the shoot and root biomass, and chlorophyll contents following strain ATSA2T treatment. Strain ATSA2T displayed PGP traits such as indole acetic acid (IAA, 62.9 µg/mL) and siderophore production, and phosphate solubilization activity. Furthermore, genome analysis of this strain suggested the presence of gene clusters involved in iron acquisition (fhuABD, afuABC, fbpABC, and fepCDG) and phosphate solubilization (pstABCHS, phoABHLU, and phnCDEP) and other phytohormone biosynthesis genes, including indole-3-acetic acid (trpABCDEFG), in the genome. Interestingly, the secondary metabolites cerecidin, carotenoid, siderophore (staphylobactin), and bacillaene underlying plant growth promotion were found in the whole genome via antiSMASH analysis. Overall, physiological testing and genome analysis data provide comprehensive insights into plant growth-promoting mechanisms, suggesting the relevance of strain ATSA2T in agricultural biotechnology.

7.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36260506

RESUMO

A Gram-negative, aerobic, rod-shaped bacterium, designated DM2-R-LB4T was isolated from Cannabis sativa L. 'Cheungsam' in Andong, Republic of Korea. The strain DM2-R-LB4T grew at temperatures of 15-45 °C (optimum, 30-37 °C), pH of 5.5-9 (optimum, 8.0), and 0-2 % (w/v) NaCl concentration (optimum, 0%). Phylogenetic analyses based on the 16S rRNA gene sequences revealed that strain DM2-R-LB4T is related to species of the genus Sphingomonas, and shared 97.8 and 97.5% similarity to Sphingomonas kyenggiensis KCTC 42244T and Sphingomonas leidyi DSM 4733T, respectively. The DNA G+C content was 67.9 mol% and genome analysis of the strain DM2-R-LB4T revealed that the genome size was 4 386 171 bp and contained 4 009 predicted protein-coding genes. The average nucleotide identity (ANI) values between strain DM2-R-LB4T and S. kyenggiensis KCTC 42244T, and S. leidyi DSM 4733T was 76.8 and 76.7 %, respectively, while the values of digital DNA-DNA hybridization (dDDH) were 20.7 and 20.6 %, respectively. C14 : 0 2-OH, C16 : 0, and summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c) were the major fatty acids (>10 %) in the strain DM2-R-LB4T. The polar lipids comprised diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), sphingoglycolipid (SGL), glycolipid (GL), phospholipid (PL), and two unidentified polar lipids (L1 and L2). Ubiquinone-10 (Q-10) was the only respiratory quinone. The polyamine pattern was found to contain homospermidine, putrescine, and spermidine. The results of phylogenetic anlayses, polyphasic studies, revealed that strain DM2-R-LB4T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas cannabina sp. nov., is proposed. The type strain is DM2-R-LB4T (=KCTC 92075T = GDMCC 1.3018T).


Assuntos
Cannabis , Sphingomonas , RNA Ribossômico 16S/genética , Filogenia , Cannabis/genética , Fosfatidiletanolaminas , Composição de Bases , Ubiquinona/química , Espermidina/química , Microbiologia do Solo , Cloreto de Sódio , Putrescina , Cardiolipinas , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Análise de Sequência de DNA , Fosfolipídeos/química , Glicolipídeos/química , Fosfatidilcolinas , Glicoesfingolipídeos/análise , Nucleotídeos
8.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806155

RESUMO

In tomato cultivation, a rare natural mutation in the flowering repressor antiflorigen gene SELF-PRUNING (sp-classic) induces precocious shoot termination and is the foundation in determinate tomato breeding for open field production. Heterozygous single flower truss (sft) mutants in the florigen SFT gene in the background of sp-classic provide a heterosis-like effect by delaying shoot termination, suggesting the subtle suppression of determinacy by genetic modification of the florigen-antiflorigen balance could improve yield. Here, we isolated three new sp alleles from the tomato germplasm that show modified determinate growth compared to sp-classic, including one allele that mimics the effect of sft heterozygosity. Two deletion alleles eliminated functional transcripts and showed similar shoot termination, determinate growth, and yields as sp-classic. In contrast, amino acid substitution allele sp-5732 showed semi-determinate growth with more leaves and sympodial shoots on all shoots. This translated to greater yield compared to the other stronger alleles by up to 42%. Transcriptome profiling of axillary (sympodial) shoot meristems (SYM) from sp-classic and wild type plants revealed six mis-regulated genes related to the floral transition, which were used as biomarkers to show that the maturation of SYMs in the weaker sp-5732 genotype is delayed compared to sp-classic, consistent with delayed shoot termination and semi-determinate growth. Assessing sp allele frequencies from over 500 accessions indicated that one of the strong sp alleles (sp-2798) arose in early breeding cultivars but was not selected. The newly discovered sp alleles are potentially valuable resources to quantitatively manipulate shoot growth and yield in determinate breeding programs, with sp-5732 providing an opportunity to develop semi-determinate field varieties with higher yields.


Assuntos
Solanum lycopersicum , Alelos , Florígeno/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/metabolismo , Meristema/genética , Mutação , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo
9.
Front Plant Sci ; 13: 894545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620680

RESUMO

Rice cultivation needs extensive amounts of water. Moreover, increased frequency of droughts and water scarcity has become a global concern for rice cultivation. Hence, optimization of water use is crucial for sustainable agriculture. Here, we characterized Loose Plant Architecture 1 (LPA1) in vasculature development, water transport, drought resistance, and grain yield. We performed genetic combination of lpa1 with semi-dwarf mutant to offer the optimum rice architecture for more efficient water use. LPA1 expressed in pre-vascular cells of leaf primordia regulates genes associated with carbohydrate metabolism and cell enlargement. Thus, it plays a role in metaxylem enlargement of the aerial organs. Narrow metaxylem of lpa1 exhibit leaves curling on sunny day and convey drought tolerance but reduce grain yield in mature plants. However, the genetic combination of lpa1 with semi-dwarf mutant (dep1-ko or d2) offer optimal water supply and drought resistance without impacting grain-filling rates. Our results show that water use, and transports can be genetically controlled by optimizing metaxylem vessel size and plant height, which may be utilized for enhancing drought tolerance and offers the potential solution to face the more frequent harsh climate condition in the future.

10.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35562997

RESUMO

Low-temperature atmospheric pressure plasma has been used in various fields such as plasma medicine, agriculture, food safety and storage, and food manufacturing. In the field of plasma agriculture, plasma treatment improves seed germination, plant growth, and resistance to abiotic and biotic stresses, allows pesticide removal, and enhances biomass and yield. Currently, the complex molecular mechanisms of plasma treatment in plasma agriculture are fully unexplored, especially those related to seed germination and plant growth. Therefore, in this review, we have summarized the current progress in the application of the plasma treatment technique in plants, including plasma treatment methods, physical and chemical effects, and the molecular mechanism underlying the effects of low-temperature plasma treatment. Additionally, we have discussed the interactions between plasma and seed germination that occur through seed coat modification, reactive species, seed sterilization, heat, and UV radiation in correlation with molecular phenomena, including transcriptional and epigenetic regulation. This review aims to present the mechanisms underlying the effects of plasma treatment and to discuss the potential applications of plasma as a powerful tool, priming agent, elicitor or inducer, and disinfectant in the future.


Assuntos
Germinação , Sementes , Epigênese Genética , Germinação/fisiologia , Desenvolvimento Vegetal , Estresse Fisiológico
11.
Plant Biotechnol J ; 20(8): 1533-1545, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35478430

RESUMO

The continuous growth of the global population and the increase in the amount of arid land has severely constrained agricultural crop production. To solve this problem, many researchers have attempted to increase productivity through the efficient distribution of energy; however, the direct relationship between the plant vasculature, specifically phloem development, and crop yield is not well established. Here, we demonstrate that an optimum increase in phloem-transportation capacity by reducing SIJUL expression leads to improved sink strength in tomato (Solanum lycopersicum L.). SIJUL, a negative regulator of phloem development, suppresses the translation of a positive regulator of phloem development, SlSMXL5. The suppression of SlJUL increases the number of phloem cells and sucrose transport, but only an optimal reduction of SlJUL function greatly enhances sink strength in tomato, improving fruit setting, and yield contents by 37% and 60%, respectively. We show that the increment in phloem cell number confers spare transport capacity. Our results suggest that the control of phloem-transport capacity within the threshold could enhance the commitment of photosynthates to instigate yield improvement.


Assuntos
Floema , Solanum lycopersicum , Transporte Biológico , Frutas/genética , Frutas/metabolismo , Solanum lycopersicum/genética , Floema/metabolismo
12.
Sci Rep ; 12(1): 5001, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322121

RESUMO

Solanum nigrum, known as black nightshade, is a medicinal plant that contains many beneficial metabolites in its fruit. The molecular mechanisms underlying the synthesis of these metabolites remain uninvestigated due to limited genetic information. Here, we identified 47,470 unigenes of S. nigrum from three different tissues by de novo transcriptome assembly, and 78.4% of these genes were functionally annotated. Moreover, gene ontology (GO) analysis using 18,860 differentially expressed genes (DEGs) revealed tissue-specific gene expression regulation. We compared gene expression patterns between S. nigrum and tomato (S. lycopersicum) in three tissue types. The expression patterns of carotenoid biosynthetic genes were different between the two species. Comparison of the expression patterns of flavonoid biosynthetic genes showed that 9 out of 14 enzyme-coding genes were highly upregulated in the fruit of S. nigrum. Using CRISPR-Cas9-mediated gene editing, we knocked out the R2R3-MYB transcription factor SnAN2 gene, an ortholog of S. lycopersicum ANTHOCYANIN 2. The mutants showed yellow/green fruits, suggesting that SnAN2 plays a major role in anthocyanin synthesis in S. nigrum. This study revealed the connection between gene expression regulation and corresponding phenotypic differences through comparative analysis between two closely related species and provided genetic resources for S. nigrum.


Assuntos
Solanum lycopersicum , Solanum nigrum , Antocianinas , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum nigrum/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
13.
Artigo em Inglês | MEDLINE | ID: mdl-35130136

RESUMO

A Gram-stain-negative, facultatively anaerobic, motile by gliding, rod-shaped, oxidase- and catalase-positive bacterial strain, designated BB8T, was isolated from the stems of a Korean soybean cultivar (Glycine max L. cv. Gwangan). The strain produced a yellow pigment on tryptic soy agar. Growth of strain BB8T occurred at pH 5.0-8.0 (optimum, pH 7.0), at 10-35 °C (optimum, 25-30 °C) and in the presence of 0-1 % (w/v) NaCl (optimum, 0.5%). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain BB8T formed a lineage within the genus Flavobacterium and was most closely related to Flavobacterium artemisiae SYP-B1015T (96.9 % 16S rRNA gene sequence similarity) and Flavobacterium ustbae T13T (96.8%). The complete genome sequence of strain BB8T was 5 513 159 bp long with a G+C content of 34.1 mol%. The major fatty acids (>10 %) of strain BB8T were iso-C15 : 0 (21 %), summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c, 20.3%) and iso-C16 : 0 3-OH (13.7%). The predominant polar lipids were phosphatidylethanolamine and unidentified aminolipids, and the major respiratory quinone was menaquinone-6. Based on these phenotypic, genotypic and chemotaxonomic characteristics, strain BB8T is considered to represent a novel species of the genus Flavobacterium, for which the name Flavobacterium endoglycinae sp. nov. is proposed. The type strain is BB8T (=KCTC 82167T=CCTCC AB 2020070T).


Assuntos
Flavobacterium , Glycine max , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacterium/classificação , Flavobacterium/isolamento & purificação , Fosfolipídeos/química , Caules de Planta/microbiologia , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Glycine max/microbiologia , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830075

RESUMO

This study aimed to investigate the effects of the human macrophage (MP) secretome in cellular xenograft rejection. The role of human nucleoside diphosphate kinase A (hNME1), from the secretome of MPs involved in the neuronal differentiation of miniature pig adipose tissue-derived mesenchymal stem cells (mp AD-MSCs), was evaluated by proteomic analysis. Herein, we first demonstrate that hNME1 strongly binds to porcine ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 (pST8SIA1), which is a ganglioside GD3 synthase. When hNME1 binds with pST8SIA1, it induces degradation of pST8SIA1 in mp AD-MSCs, thereby inhibiting the expression of ganglioside GD3 followed by decreased neuronal differentiation of mp AD-MSCs. Therefore, we produced nanobodies (NBs) named NB-hNME1 that bind to hNME1 specifically, and the inhibitory effect of NB-hNME1 was evaluated for blocking the binding between hNME1 and pST8SIA1. Consequently, NB-hNME1 effectively blocked the binding of hNME1 to pST8SIA1, thereby recovering the expression of ganglioside GD3 and neuronal differentiation of mp AD-MSCs. Our findings suggest that mp AD-MSCs could be a potential candidate for use as an additive, such as an immunosuppressant, in stem cell transplantation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Gangliosídeos/biossíntese , Células-Tronco Mesenquimais/enzimologia , Nucleosídeo NM23 Difosfato Quinases/farmacologia , Neurônios/enzimologia , Sialiltransferases/antagonistas & inibidores , Animais , Humanos , Sialiltransferases/metabolismo , Suínos , Porco Miniatura
15.
Mol Cells ; 44(10): 770-779, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34711693

RESUMO

Transgenic Arabidopsis thaliana expressing an anti-rabies monoclonal antibody (mAb), SO57, was obtained using Agrobacterium-mediated floral dip transformation. The endoplasmic reticulum (ER) retention signal Lys-Asp-Glu-Leu (KDEL) was tagged to the C-terminus of the anti-rabies mAb heavy chain to localize the mAb to the ER and enhance its accumulation. When the inaccurately folded proteins accumulated in the ER exceed its storage capacity, it results in stress that can affect plant development and growth. We generated T1 transformants and obtained homozygous T3 seeds from transgenic Arabidopsis to investigate the effect of KDEL on plant growth. The germination rate did not significantly differ between plants expressing mAb SO57 without KDEL (SO plant) and mAb SO57 with KDEL (SOK plant). The primary roots of SOK agar media grown plants were slightly shorter than those of SO plants. Transcriptomic analysis showed that expression of all 11 ER stress-related genes were not significantly changed in SOK plants relative to SO plants. SOK plants showed approximately three-fold higher mAb expression levels than those of SO plants. Consequently, the purified mAb amount per unit of SOK plant biomass was approximately three times higher than that of SO plants. A neutralization assay revealed that both plants exhibited efficient rapid fluorescent focus inhibition test values against the rabies virus relative to commercially available human rabies immunoglobulins. KDEL did not upregulate ER stress-related genes; therefore, the enhanced production of the mAb did not affect plant growth. Thus, KDEL fusion is recommended for enhancing mAb production in plant systems.


Assuntos
Arabidopsis/química , Retículo Endoplasmático/metabolismo , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/metabolismo , Humanos , Transdução de Sinais
16.
Mol Plant Microbe Interact ; 34(8): 962-972, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33881922

RESUMO

Ralstonia solanacearum causes bacterial wilt disease in solanaceous crops. Identification of avirulence type III-secreted effectors recognized by specific disease resistance proteins in host plant species is an important step toward developing durable resistance in crops. In the present study, we show that R. solanacearum effector RipJ functions as an avirulence determinant in Solanum pimpinellifolium LA2093. In all, 10 candidate avirulence effectors were shortlisted based on the effector repertoire comparison between avirulent Pe_9 and virulent Pe_1 strains. Infection assays with transgenic strain Pe_1 individually carrying a candidate avirulence effector from Pe_9 revealed that only RipJ elicits strong bacterial wilt resistance in S. pimpinellifolium LA2093. Furthermore, we identified that several RipJ natural variants do not induce bacterial wilt resistance in S. pimpinellifolium LA2093. RipJ belongs to the YopJ family of acetyltransferases. Our sequence analysis indicated the presence of partially conserved putative catalytic residues. Interestingly, the conserved amino acid residues in the acetyltransferase catalytic triad are not required for effector-triggered immunity. In addition, we show that RipJ does not autoacetylate its lysine residues. Our study reports the identification of the first R. solanacearum avirulence protein that triggers bacterial wilt resistance in tomato. We expect that our discovery of RipJ as an avirulence protein will accelerate the development of bacterial wilt-resistant tomato varieties in the future.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Ralstonia solanacearum , Solanum , Proteínas de Bactérias/genética , Resistência à Doença , Doenças das Plantas
17.
Data Brief ; 34: 106715, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33506081

RESUMO

Tomato belongs to the Solanaceae family of plants. It is a diploid plant with 12 chromosomes. Previous studies have reported that its genome size is 950 MB with 35,000 protein-coding genes. Micro-Tom Tomato is a miniature dwarf determinate tomato cultivar. It has a small-sized genome, a short lifecycle, and a short seed-setting under fluorescent light. These features are similar to those of Arabidopsis. Consequently, Micro-Tom Tomato is considered as a model cultivar of tomato (Solanum lycopersicum) suitable for research. We sequenced its transcriptomes to identify tissue-specific gene candidate profiles in different plant tissues (petals, sepals, pistils, and stamens) at developmental stages.

18.
Int J Mol Sci ; 21(21)2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171878

RESUMO

Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from various tissues in the adult body. MSCs should be characterized by three criteria for regenerative medicine. MSCs must (1) adhere to plastic surfaces, (2) express specific surface antigens, and (3) differentiate into mesodermal lineages, including chondrocytes, osteoblasts, and adipocytes, in vitro. Interestingly, MSCs have immunomodulatory features and secrete trophic factors and immune receptors that regulate the microenvironment in host tissue. These specific and unique therapeutic properties make MSCs ideal as therapeutic agents in vivo. Specifically, pre-clinical and clinical investigators generated inflammatory and fibrotic diseases models, and then transplantation of MSCs into diseases models for therapeutic effects investigation. In this review, we characterize MSCs from various tissues and describe their applications for treating various inflammation and fibrotic diseases.


Assuntos
Fibrose/terapia , Inflamação/terapia , Células-Tronco Mesenquimais/metabolismo , Adipócitos/citologia , Animais , Diferenciação Celular , Condrócitos/citologia , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Medicina Regenerativa/métodos
19.
Nat Biotechnol ; 38(2): 182-188, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31873217

RESUMO

Cultivation of crops in urban environments might reduce the environmental impact of food production1-4. However, lack of available land in cities and a need for rapid crop cycling, to yield quickly and continuously, mean that so far only lettuce and related 'leafy green' vegetables are cultivated in urban farms5. New fruit varieties with architectures and yields suitable for urban farming have proven difficult to breed1,5. We identified a regulator of tomato stem length (SlER) and devised a trait-stacking strategy to combine mutations for condensed shoots, rapid flowering (SP5G) and precocious growth termination (SP). Application of our strategy using one-step CRISPR-Cas9 genome editing restructured vine-like tomato plants into compact, early yielding plants suitable for urban agriculture. Field data confirmed that yields were maintained, and we demonstrated cultivation in indoor farming systems. Targeting the same stem length regulator alone in groundcherry, another Solanaceae plant, also enabled engineering to a compact stature. Our approach can expand the repertoire of crops for urban agriculture.


Assuntos
Agricultura/métodos , Produtos Agrícolas/fisiologia , Frutas/fisiologia , Solanaceae/fisiologia , Sequência de Bases , Sistemas CRISPR-Cas/genética , Edição de Genes , Inflorescência/fisiologia , Mutação/genética , Filogenia , Brotos de Planta/fisiologia
20.
Int J Mol Sci ; 21(1)2019 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-31877897

RESUMO

Gangliosides are sialic acid-containing glycosphingolipids, which are the most abundant family of glycolipids in eukaryotes. Gangliosides have been suggested to be important lipid molecules required for the control of cellular procedures, such as cell differentiation, proliferation, and signaling. GD1a is expressed in interstitial cells during ovarian maturation in mice and exogenous GD1a is important to oocyte maturation, monospermic fertilization, and embryonic development. In this context, GM1 is known to influence signaling pathways in cells and is important in sperm-oocyte interactions and sperm maturation processes, such as capacitation. GM3 is expressed in the vertebrate oocyte cytoplasm, and exogenously added GM3 induces apoptosis and DNA injury during in vitro oocyte maturation and embryogenesis. As a consequence of this, ganglioside GT1b and GM1 decrease DNA fragmentation and act as H2O2 inhibitors on germ cells and preimplantation embryos. This review describes the functional roles of gangliosides in spermatozoa, oocytes, and early embryonic development.


Assuntos
Blastocisto/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Gangliosídeo G(M3)/farmacologia , Oócitos/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Blastocisto/metabolismo , Sequência de Carboidratos , Feminino , Gangliosídeo G(M3)/química , Gangliosídeo G(M3)/metabolismo , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA